## Coddle Creek Tributary (Indian Run) Stream Restoration EEP Project # 94 DENR Contract # 5360

Annual Monitoring Report Year 4 of 5 Cabarrus County, North Carolina



Prepared for:

North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) 1652 Mail Service Center Raleigh, NC 27699-1652

Construction Completed: March 27, 2011 Data Collected: September & October 2015 Report Submission: December 2015

Prepared by:



SEPI Engineering and Construction 1025 Wade Avenue Raleigh, NC 27605

## Coddle Creek Tributary (Indian Run) Stream Restoration Project # 94

## Annual Monitoring Report Year 4 of 5 Cabarrus County, North Carolina

## TABLE OF CONTENTS

| 1.0 | EXECUTIVE SUMMARY | .1 |
|-----|-------------------|----|
| 2.0 | METHODOLOGY       | .3 |
| 3.0 | REFERENCES        | .4 |

## APPENDICES

## APPENDIX A PROJECT VICINITY MAPS AND BACKGROUND TABLES

Figure 1 – Restoration Site Vicinity Map Figure 2 – USGS Concord SE Quad Map Table 1a – Project Components Table 1b – Component Summations Table 2 – Project Activity and Reporting History Table 3 – Project Contacts Table 4 – Project Attributes

## APPENDIX B VISUAL ASSESSMENT DATA

Figure 3 – Current Condition Plan View Table 5a – Visual Stream Morphology Stability Assessment – Upper Reach Table 5b – Visual Stream Morphology Stability Assessment – Lower Reach Table 6 – Vegetation Condition Assessment Photos – Permanent Photo Points Photos – Vegetation Plots

## APPENDIX C VEGETATION PLOT DATA

Table 7 – Vegetation Plot Mitigation Success SummaryTable 8 – CVS Vegetation MetadataTable 9 – Planted and Total Stem Counts (Species by Plot with Annual Means)

## APPENDIX D STREAM SURVEY DATA

Cross-Sections with Annual Overlays Longitudinal Profiles with Annual Overlays Pebble Count Plots with Annual Overlays Table 10a – Baseline Stream Data Summary – Upper Reach Table 10b – Baseline Stream Data Summary – Lower Reach Table 11a – Monitoring Data – Dimensional Morphology Summary Table 11b – Monitoring Data – Stream Reach Data Summary – Upper Reach Table 11c – Monitoring Data – Stream Reach Data Summary – Lower Reach

## APPENDIXE HYDROLOGIC DATA

Table 12 - Verification of Bankfull Events

## **1.0 EXECUTIVE SUMMARY**

The Coddle Creek Tributary (Indian Run) Stream Restoration Project, completed in March 2011, enhanced (level 1) or restored a total of 2,270 linear feet of stream in the Upper Rocky River watershed including restoring 6.17 acres of riparian buffer. In addition, approximately 1,540 linear feet of stream was preserved within the 19.61 acre conservation easement. The project is located in the USGS Hydrologic Unit (HU) 03040105020010 of the Yadkin Pee-Dee River Basin. This HU is within the Division of Mitigation Service's (DMS) Upper Rocky River Local Watershed Plan and is also listed as a Targeted Local Watershed (TLW) in DMS's Lower Yadkin Pee-Dee River Basin Restoration Priorities Plan 2009. The project site, which is protected by a 19.61-acre permanent conservation easement held by the State of North Carolina, is situated in Cabarrus County in the Southern Outer Piedmont ecoregion of the Piedmont physiographic province. Coddle Creek, from 0.2 miles upstream of NC Highway 73 (NC-73) to Rocky River, is currently listed on the NC 303(d) List as impaired due to turbidity (NCDENR 2012). In addition to the current non-supporting use classification for the lower portions of Coddle Creek, anticipated high rates of development in the watershed pose critical challenges in managing the region's aquatic resources. The project goals and objectives are listed below.

## Project Goals

- Improve local water quality by reestablishing stream stability and capacity to transport watershed flows and sediment load.
- Provide additional floodplain storage by increasing the capacity of the stream to mitigate flood flows.
- Restore aquatic and riparian habitat.
- Reducing non-point source sedimentation and nutrient inputs into the project reaches.

## Project Objectives

- Restore/Enhance (level 1) 2,270 linear feet of stable stream channel morphology, supported by instream habitat and grade/bank stabilization structures.
- Preserve 852 linear feet of stream within the conservation easement.
- Eliminate accelerated bank erosion by creating a bankfull bench, floodplain, and laying back slopes.
- Reestablish a native riparian buffer.

## Vegetation Assessment

The vegetative success of the restoration site is based on criteria established in the USACE Stream Mitigation Guidelines (2003). Vegetation monitoring will be considered successful if a minimum of 260 planted stems/acre are surviving at the end of five years. The interim measure of vegetative success for the site will be the survival of a minimum of 320 planted stems/acre in year three and 288 stems/acre at the end of year four. The Monitoring Year 4 (MY4) stem counts are located in Tables 7 and 9 in Appendix C. Currently, only Vegetation Plot 8 is not meeting the interim measure of success (283 stems/acre). However, when including volunteer stems, Plot 8 exceeds the interim success criteria (5,787 total stems/acre). Vegetation throughout the reach appears to be growing at acceptable rates and the mortality rate appears to be fairly low. Areas noted in previous monitoring years as having sparse vegetation or being bare now include herbaceous plants and small woody stems.

Cattails (*Typha latifolia*) growth has notably decreased throughout both reaches. Only one area of cattails was noted during monitoring. The location of the cattails are noted on the CCPV and represent

approximately 24 linear feet of the reach or 1 % of the total reach. The areas of current and historical cattails will continue to be monitored. Other invasive plant species noted include lespedeza (*Lespedeza* sp.), kudzu vine (*Pueraria lobata*), and mimosa (*Albizia julibrissin*). Kudzu vine is sporadic throughout the upper reach and some mimosa trees have reached the canopy. The species will be monitored for spread. The project site will be treated for invasive species until project closeout by a DMS invasive species contractor. Lespedeza is found commonly throughout both reaches, sometimes overtaking the established vegetation plots. Vegetation in these plots will be monitored for signs of stress due to competition with lespedeza. No new easement encroachments were noted.

#### Stream Assessment

The upper and lower reaches of the restoration project were observed to be in stable condition. The channel's profile and cross-sections adjusted minimally from the baseline conditions. The channel accesses its floodplain and evidence of bankfull events were observed during Year 4 monitoring. This evidence included the presence of wrack lines, sediment deposits, and a crest gauge reading of 10.5" above bankfull. The substrate continues to shows a gradual change to more coarse material in both reaches.

Two areas of bar formation were noted at Sta. 25+29 - 25+62 and Sta. 26+50 - 26+67 on the upper reach. The bar formation on the lower reach at Sta. 11+35 was not present this monitoring year. Areas of bank erosion noted in previous monitoring reports were stable this year and will continue to be monitored. The terrace rill at approximately Sta. 18+00 on the left bank of the upper reach was noted in the Monitoring Year 1 report, but appears to have stabilized. This area will continue to be monitored for erosion. One headcut was noted at Sta. 17+75 on the lower reach. The headcut is outside of the stream channel and seems to be due to overland flow. A debris jam noted at Sta. 15+60 on the lower reach in the previous monitoring year has been resolved. A small area of bare bank was noted just downstream of cross section 7 on the right bank. A relict beaver lodge was noted at the downstream section of the bare area. All problem areas are noted on the Current Conditions Plan View (CCPV) sheets in Appendix B.

In response to continued observations of beaver activity in the stream, DMS has placed the project site on a quarterly inspection schedule for beaver and beaver dam removal with the USDA Animal and Plant Health Inspection Service (USDA-APHIS).

Pebble count data for the cross sections indicate similar or coarser values compared to baseline except in cross sections 1 and 8. This indicates a good movement of material at least in the upstream parts of the upper reach. The smaller particle size at cross section 1 may be from the upstream terrace rill erosion. The lower reach riffle at cross section 8 still exhibits a small particle size making up the riffle section. Effects from the relict beaver dam upstream of this area may play a role in the type of bed material observed this monitoring year. The riffle at cross section 5 exhibits larger particle sizes. As the lower reach was constructed as an offline segment, these values are not unexpected. It will take longer for coarser material to progress to the lower reach from upstream areas. Since the cross section dimensions have remained relatively the same for the lower reach, the sections are stable despite the smaller bed material.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting documentation formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on DMS's website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

## 2.0 METHODOLOGY

The following methods were utilized during the Year 4 monitoring for data collection and postprocessing:

- Geomorphic topographic data collections were performed in the field using a survey grade GPS such that each survey point has three-dimensional coordinates, and is georeferenced (NAD83-State Plane Feet FIPS3200).
- Longitudinal stationing was developed using the as-built survey thalweg as a baseline.
- The particle size distribution protocol used was the Modified-Wolman pebble count.
- The CVS Level 2 methodology was utilized for the vegetation plot data collection.

## 3.0 REFERENCES

HDR Engineering, Inc. 2007. Final Stream Restoration Plan for Indian Run (Trib. to Coddle Creek).

- HDR Engineering, Inc. 2009. Indian Run Stream Restoration Final Plans (90%).
- HDR Engineering, Inc. 2011. Baseline Monitoring and As Built Baseline Report.
- HDR Engineering, Inc. 2012. Monitoring Report Year 1 of 5.
- Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. (http://cvs.bio.unc.edu/methods.htm)
- North Carolina Ecosystem Enhancement Program. 2011. Procedure Guidance and Content Requirements for EEP Monitoring Reports. Version 1.4 (http://www.nceep.net/business/EEP\_Mon\_Rep\_Temp\_1.3\_01-15-10.pdf)
- SEPI Engineering & Construction, Inc. 2013. Coddle Creek Tributary (Indian Run) Annual Monitoring Report Year 2 of 5.
- SEPI Engineering & Construction, Inc. 2014. Coddle Creek Tributary (Indian Run) Annual Monitoring Report Year 3 of 5.
- U.S. Army Corps of Engineers, Wilmington District. 2003. Stream Mitigation Guidelines. North Carolina Division of Water Quality (DWQ), U.S. Environmental Protection Agency, Region IV (EPA), Natural Resources Conservation Service (NRCS) and the North Carolina Wildlife Resources Commission (WRC).

Appendix A Project Vicinity Map and Background Tables





|                          |                        |                      |          |                       | ,                                                 | ect Compone         |                     |                 |                                                                                                                                                                           |
|--------------------------|------------------------|----------------------|----------|-----------------------|---------------------------------------------------|---------------------|---------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project                  |                        |                      |          |                       |                                                   | itary (Indian R     |                     |                 |                                                                                                                                                                           |
| Component<br>or Reach ID | Existing<br>Feet/Acres | Restoration<br>Level | Approach | Footage or<br>Acreage | Stationing                                        | Mitigation<br>Ratio | Mitigation<br>Units | BMP<br>Elements | Comment                                                                                                                                                                   |
| Reach 1 -<br>Upper       | 1275 lf                | E (Level 1)          | P3       | 1275 lf               | 15+00-26+26<br>& 26+46-<br>27+95                  | 1.5:1               | 850                 |                 | Restored bankfull dimension within the existing channel, utilized a partial floodplain bench to restore floodprone conditions, and enhanced existing pattern and profile. |
| Reach 1 -<br>Upper       | 20 lf                  | E (Level 1)          | P3       | 20 lf                 | 26+26-26+46                                       | 3:1                 | 7                   |                 | Restored bankfull dimension within the existing channel, utilized a partial floodplain bench to restore floodprone conditions, and enhanced existing pattern and profile. |
| Reach 1 -<br>Upper       | 415 lf                 | Ρ                    |          | 415 lf                | 07+52-09+10<br>& 09+34-<br>11+72 &<br>14+45-14+64 | 10:1                | 42                  |                 | Preserved channel in its existing condition within the conservation easement.                                                                                             |
| Reach 1 -<br>Upper       | 327 lf                 | Ρ                    |          | 297 lf*               | 09+10-9+34 &<br>11+72-14+45                       | 20:1                | 15                  |                 | Preserved channel in its existing condition within<br>the utility easement. *30 feet of sanitary sewer<br>easement will not receive mitigation credits                    |
| Reach 2 -<br>Lower       | 735 lf                 | R                    | P2       | 975 lf                | 10+00-19+75                                       | 1:1                 | 975                 |                 | Fully restored pattern, dimension and profile,<br>excavated a new channel within an adjoining<br>floodplain bench to restore floodplain conditions.                       |
| Reach 2 -<br>Lower       | 434 lf                 | Ρ                    |          | 434 lf                | 21+72-23+58<br>& 24+45-<br>26+93                  | 20:1                | 22                  |                 | Preserved channel in its existing condition within the utility easement.                                                                                                  |
| Reach 2 -<br>Lower       | 394 lf                 | Ρ                    |          | 394 lf                | 19+75-21+72<br>& 23+58-<br>24+45 &<br>26+93-28+03 | 10:1                | 39                  |                 | Preserved channel in its existing condition within the conservation easement.                                                                                             |

|                        | Table 1b. Component Summations<br>Coddle Creek Tributary (Indian Run) / 94 |        |                  |                       |                     |                           |       |  |  |  |  |
|------------------------|----------------------------------------------------------------------------|--------|------------------|-----------------------|---------------------|---------------------------|-------|--|--|--|--|
|                        |                                                                            | Stream | Riparian W       | Riparian Wetland (Ac) |                     | Potential                 | Total |  |  |  |  |
| Restoration<br>Level   | evel Stream (If) Mitigation Riverine                                       |        | Non-<br>Riverine | Planted<br>Area (Ac)  | Buffer<br>Area (Ac) | Conservation<br>Area (Ac) | BMP   |  |  |  |  |
| Restoration<br>(Lower) | 975                                                                        | 975    |                  |                       | 4.21                | 2.58                      | 10.11 |  |  |  |  |
| Enhancement<br>(Upper) | 1295                                                                       | 857    |                  |                       | 4.30                | 3.59                      | 9.50  |  |  |  |  |
| Preservation           | 1540                                                                       | 118    |                  |                       |                     | 1.89                      |       |  |  |  |  |
| Totals<br>(Feet/Acres) |                                                                            |        |                  |                       | 8.51                | 8.06                      | 19.61 |  |  |  |  |

|                                                                                                                                             | Table 2. Project Activity and Reporting His<br>Coddle Creek Tributary (Indian Run) / 9 |               |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| Elapsed Time Since Grading Complete: 4 yrs 8 months<br>Elapsed Time Since Planting Complete: 4 yrs 8 Months<br>Number of Reporting Years: 4 |                                                                                        |               |  |  |  |  |  |  |  |
|                                                                                                                                             | Data Collection                                                                        | Completion or |  |  |  |  |  |  |  |
| Activity or Deliverable                                                                                                                     | Complete                                                                               | Delivery      |  |  |  |  |  |  |  |
| Restoration Plan                                                                                                                            | Jun-07                                                                                 | Aug-07        |  |  |  |  |  |  |  |
| Final Design – Construction Plans                                                                                                           | Jun-07                                                                                 | Jul-09        |  |  |  |  |  |  |  |
| Construction/Grading                                                                                                                        | NA                                                                                     | Mar-11        |  |  |  |  |  |  |  |
| Planting                                                                                                                                    | NA                                                                                     | Mar-11        |  |  |  |  |  |  |  |
| Final Inspection                                                                                                                            | NA                                                                                     | Mar-11        |  |  |  |  |  |  |  |
| Monitoring – baseline)                                                                                                                      | May-11                                                                                 | Aug-11        |  |  |  |  |  |  |  |
| Year 1 Monitoring                                                                                                                           | 5/29/2012 - 5/30/2012                                                                  | Sep-12        |  |  |  |  |  |  |  |
| Year 2 Monitoring                                                                                                                           | Nov-13                                                                                 | Mar-14        |  |  |  |  |  |  |  |
| Year 3 Monitoring                                                                                                                           | Oct-14                                                                                 | Dec-14        |  |  |  |  |  |  |  |
| Year 4 Monitoring                                                                                                                           | Oct-15                                                                                 | Nov-15        |  |  |  |  |  |  |  |
| Year 5 Monitoring                                                                                                                           |                                                                                        |               |  |  |  |  |  |  |  |

|                                           | Table 3. Project Contacts Table                                  |  |
|-------------------------------------------|------------------------------------------------------------------|--|
|                                           | Coddle Creek Tributary (Indian Run) / 94                         |  |
| Designer                                  | HDR Engineering Inc. of the Carolinas                            |  |
|                                           | 3733 National Drive, Suite 207, Raleigh, NC 27612                |  |
| Primary project design POC                | Jonathan Henderson, PE (919) 785-1118                            |  |
| Construction Contractor                   | Land Mechanic Designs, Inc.                                      |  |
|                                           | 126 Circle G Lane, Willow Spring, NC 27592                       |  |
| Construction contractor POC               | Lloyd Glover, (919) 639-6132                                     |  |
| Survey Contractor                         | Stewart Proctor Pllc                                             |  |
|                                           | 319 Chapanoke Road #106, Raleigh, NC 27603                       |  |
| Survey contractor POC                     | Herb Proctor, (919) 799-1855                                     |  |
| Planting Contractor                       | HARP, Inc.                                                       |  |
|                                           | 301 McCullough Drive, 4th Floor, Charlotte, NC 28262             |  |
| Planting contractor POC                   | Alan Peoples, (704) 841-2841                                     |  |
| Seeding Contractor                        | Land Mechanic Designs, Inc.                                      |  |
|                                           | 126 Circle G Lane, Willow Spring, NC 27592                       |  |
| Contractor point of contact               | Lloyd Glover, (919) 639-6132                                     |  |
| Seed Mix Sources                          | Green Resource, Charlotte, NC                                    |  |
|                                           | Phone: (704) 927-3100                                            |  |
| Nursery Stock Suppliers                   | Cure Nursery, Pittsboro, NC - (919) 542-6186                     |  |
|                                           | ArborGen, Blenheim, SC - (843) 528-3203                          |  |
|                                           | Foggy Mountain Nursery Ilc, Creston, NC - (336) 384-5323         |  |
|                                           | Habitat and Restoration Plants, Lexington, NC - (336) 362-6776   |  |
|                                           | NC Division of Forest Resources, Greensboro, NC - (919) 731-7988 |  |
| Monitoring Performers - Baseline & Year 1 | HDR Engineering Inc. of the Carolinas                            |  |
|                                           | 3733 National Drive, Suite 207, Raleigh, NC 27612                |  |
| Monitoring Performers - Year 2 - 4        | SEPI Engineering & Construction, Inc.                            |  |
|                                           | 1025 Wade Avenue, Raleigh, NC 27605                              |  |
| Stream Monitoring POC                     | Phil Beach, PWS (919) 787-9977                                   |  |
| Vegetation Monitoring POC                 | Kim Hamlin, Project Scientist (919) 787-9977                     |  |
|                                           |                                                                  |  |

| Table 1 Dre                                      | oject Attribute Table              |           |  |  |  |  |
|--------------------------------------------------|------------------------------------|-----------|--|--|--|--|
|                                                  | ibutary (Indian Run) / 94          |           |  |  |  |  |
| Project County                                   | Cabarrus                           |           |  |  |  |  |
| Physiographic Region                             | Piedmont                           |           |  |  |  |  |
| Ecoregion                                        | Southern Outer Piedmont            |           |  |  |  |  |
| Project River Basin                              | Yadkin / Pee Dee                   |           |  |  |  |  |
| USGS HUC for Project (14 digit)                  | 3040105020010                      |           |  |  |  |  |
| NCDWQ Sub-basin for Project                      | 03 - 07 - 11                       |           |  |  |  |  |
| Within extent of EEP Watershed Plan?             | Upper Rocky River                  |           |  |  |  |  |
| WRC Hab Class (Warm, Cool, Cold)                 | Warm                               |           |  |  |  |  |
| % of project easement fenced or demarcated       | 100% marked with EEP easement sign | 1200      |  |  |  |  |
| Beaver activity observed during design phase?    | No                                 | lage      |  |  |  |  |
|                                                  | mponent Attribute Table            |           |  |  |  |  |
|                                                  | UPPER                              | LOWER     |  |  |  |  |
| Drainage area (ac)                               | 1.5                                |           |  |  |  |  |
| Stream order                                     | 2nd                                |           |  |  |  |  |
| Restored length (feet)                           | 1295                               | 975       |  |  |  |  |
| Perennial or Intermittent                        | Per                                |           |  |  |  |  |
| Watershed type (Rural, Urban, Developing etc.)   | Devel.                             |           |  |  |  |  |
| Watershed LULC Distribution (e.g.)               |                                    |           |  |  |  |  |
| Medium Density Residential                       | 11                                 |           |  |  |  |  |
| Low Density Residential / Open Fields/ Lawns     |                                    |           |  |  |  |  |
| Forested                                         |                                    |           |  |  |  |  |
| Watershed impervious cover (%)                   |                                    |           |  |  |  |  |
| NCDWQ AU/Index number                            | -                                  |           |  |  |  |  |
| NCDWQ classification                             | С                                  |           |  |  |  |  |
| 303d listed?                                     | No                                 |           |  |  |  |  |
| Upstream of a 303d listed segment?               | Yes                                |           |  |  |  |  |
| Reasons for 303d listing or stressor             | Bio. Integ.                        | Turbidity |  |  |  |  |
| Total acreage of easement                        | 9.5                                | 10.11     |  |  |  |  |
| Total vegetated acreage within the easement      | 9.5                                | 10.11     |  |  |  |  |
| Total planted acreage as part of the restoration | 4.3                                | 4.21      |  |  |  |  |
| Rosgen classification of pre-existing            | Imp. C4                            | Ditch     |  |  |  |  |
| Rosgen classification of As-built                | C4                                 | C4        |  |  |  |  |
| Valley type                                      | VIII                               | VIII      |  |  |  |  |
| Valley slope                                     | 0.63%                              | 0.61%     |  |  |  |  |
| Valley side slope range (e.g. 2-3.%)             | -                                  | -         |  |  |  |  |
| Valley toe slope range (e.g. 2-3.%)              | · ·                                | -         |  |  |  |  |
| Cowardin classification                          | NA                                 |           |  |  |  |  |
| Trout waters designation                         | No                                 |           |  |  |  |  |
| Species of concern, endangered etc.? (Y/N)       | No                                 |           |  |  |  |  |
| Dominant soil series and characteristics         |                                    |           |  |  |  |  |
| Series                                           | Chewac                             | la        |  |  |  |  |
| Depth                                            | U                                  | U         |  |  |  |  |
| Clay%                                            | U                                  | U         |  |  |  |  |
| к                                                | U                                  | U         |  |  |  |  |
| Т                                                | U                                  | U         |  |  |  |  |
|                                                  |                                    |           |  |  |  |  |

Appendix B Visual Assessment Data





Prepared for:

NC Department of **Environmental Quality Division of Mitigation Services**  Coddle Creek Tributary (Indian Run) Year 4 Annual Report Current Conditions Plan View - Upper Reach Cabarrus County, NC December 2015 Project #94 Figure 3A



#### <u>Visual Stream Morphology Stability Assessment</u> Upper Reach 1295 Table 5a Reach ID

Assessed Length

| Major<br>Channel<br>Category | Channel<br>Sub-Category                         | Metric                                                                                                                                                                      | Number<br>Stable,<br>Performing<br>as Intended | Total<br>Number in<br>As-built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing<br>as Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage<br>with<br>Stabilizing<br>Woody<br>Vegetation | Adjusted %<br>for<br>Stabilizing<br>Woody<br>Vegetation |
|------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| 1. Bed                       | 1. Vertical Stability<br>(Riffle and Run units) | 1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect<br>flow laterally (not to include point bars)                                              |                                                |                                | 0                                 | 0                                | 100%                                   |                                                   |                                                       |                                                         |
|                              | (Rine and Run units)                            | 2. <u>Degradation</u> - Evidence of downcutting                                                                                                                             |                                                |                                | 0                                 | 0                                | 100%                                   |                                                   |                                                       |                                                         |
|                              | 2. Riffle Condition                             | 1. Texture/Substrate - Riffle maintains coarser substrate                                                                                                                   | 11                                             | 11                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 3. Meander Pool<br>Condition                    | <ol> <li><u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>&gt;</u> 1.6)</li> </ol>                                                                          | 15                                             | 15                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              |                                                 | <ol> <li>Length appropriate (&gt;30% of centerline distance between tail of<br/>upstream riffle and head of downstream riffle)</li> </ol>                                   | 15                                             | 15                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 4.Thalweg Position                              | 1. Thalweg centering at upstream of meander bend (Run)                                                                                                                      | 15                                             | 15                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              |                                                 | 2. Thalweg centering at downstream of meander (Glide)                                                                                                                       | 15                                             | 15                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 7                                               |                                                                                                                                                                             | 7                                              |                                |                                   |                                  |                                        |                                                   |                                                       | T                                                       |
| 2. Bank                      | 1. Scoured/Eroding                              | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion                                                                                    |                                                |                                | 0                                 | 0                                | 100%                                   | 0                                                 | 0                                                     | 100%                                                    |
|                              | 2. Undercut                                     | Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat. |                                                |                                | 0                                 | 0                                | 100%                                   | 0                                                 | 0                                                     | 100%                                                    |
|                              | 3. Mass Wasting                                 | Bank slumping, calving, or collapse                                                                                                                                         |                                                |                                | 0                                 | 0                                | 100%                                   | 0                                                 | 0                                                     | 100%                                                    |
|                              |                                                 |                                                                                                                                                                             |                                                | Totals                         | 0                                 | 0                                | 100%                                   | 0                                                 | 0                                                     | 100%                                                    |
| 3. Engineered<br>Structures  | 1. Overall Integrity                            | Structures physically intact with no dislodged boulders or logs.                                                                                                            | 14                                             | 14                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 2. Grade Control                                | Grade control structures exhibiting maintenance of grade across the sill.                                                                                                   | 8                                              | 8                              |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 2a. Piping                                      | Structures lacking any substantial flow underneath sills or arms.                                                                                                           | 14                                             | 14                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 3. Bank Protection                              | Bank erosion within the structures extent of influence does <u>not</u> exceed<br>15%. (See guidance for this table in EEP monitoring guidance<br>document)                  | 13                                             | 13                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |
|                              | 4. Habitat                                      | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio $\geq$ 1.6 Rootwads/logs providing some cover at base-flow.                                | 13                                             | 13                             |                                   |                                  | 100%                                   |                                                   |                                                       |                                                         |

# Table 5b Visual Stream Morphology Stability Assessment Reach ID Lower Reach

Assessed Length

Lower Reach 975

| Major<br>Channel<br>Category | Channel<br>Sub-Category | Metric                                                                                                                                                                            | Number<br>Stable,<br>Performing<br>as Intended | Total<br>Number in<br>As-built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing<br>as Intended | - | Footage<br>with<br>Stabilizing<br>Woody<br>Vegetation | Adjusted %<br>for<br>Stabilizing<br>Woody<br>Vegetation |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------------------------|---|-------------------------------------------------------|---------------------------------------------------------|
| 1. Bed                       | 1. Vertical Stability   | 1. Aggradation - Bar formation/growth sufficient to significantly deflect                                                                                                         |                                                |                                | 0                                 | 0                                | 100%                                   |   |                                                       |                                                         |
|                              | (Riffle and Run units)  | flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting                                                                                               | -                                              |                                | 0                                 | 0                                | 100%                                   |   |                                                       |                                                         |
|                              | 2. Riffle Condition     | 2. <u>Degradation</u> - Evidence of downcutting     1. Texture/Substrate - Riffle maintains coarser substrate                                                                     | 6                                              | 6                              | 0                                 | 0                                | 100%                                   |   |                                                       |                                                         |
|                              | 3. Meander Pool         |                                                                                                                                                                                   | -                                              | -                              | 4                                 |                                  |                                        |   |                                                       |                                                         |
|                              | Condition               | <ol> <li><u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>&gt;</u> 1.6)</li> </ol>                                                                                | 7                                              | 7                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              |                         | <ol> <li>Length appropriate (&gt;30% of centerline distance between tail of<br/>upstream riffle and head of downstrem riffle)</li> </ol>                                          | 7                                              | 7                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              | 4. Thalweg Position     | 1. Thalweg centering at upstream of meander bend (Run)                                                                                                                            | 7                                              | 7                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              |                         | 2. Thalweg centering at downstream of meander (Glide)                                                                                                                             | 7                                              | 7                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              |                         |                                                                                                                                                                                   |                                                |                                |                                   |                                  |                                        |   |                                                       |                                                         |
| 2. Bank                      | 1. Scoured/Eroding      | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion                                                                                          |                                                |                                | 0                                 | 0                                | 100%                                   | 0 | 0                                                     | 100%                                                    |
|                              | 2. Undercut             | Banks undercut/overhanging to the extent that mass wasting appears<br>likely. Does <u>NOT</u> include undercuts that are modest, appear<br>sustainable and are providing habitat. |                                                |                                | 0                                 | 0                                | 100%                                   | 0 | 0                                                     | 100%                                                    |
|                              | 3. Mass Wasting         | Bank slumping, calving, or collapse                                                                                                                                               |                                                |                                | 0                                 | 0                                | 100%                                   | 0 | 0                                                     | 100%                                                    |
|                              |                         |                                                                                                                                                                                   |                                                | Totals                         | 0                                 | 0                                | 100%                                   | 0 | 0                                                     | 100%                                                    |
| 3. Engineered<br>Structures  | 1. Overall Integrity    | Structures physically intact with no dislodged boulders or logs.                                                                                                                  | 9                                              | 9                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              | 2. Grade Control        | Grade control structures exhibiting maintenance of grade across the sill.                                                                                                         | 5                                              | 5                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              | 2a. Piping              | Structures lacking any substantial flow underneath sills or arms.                                                                                                                 | 8                                              | 9                              |                                   |                                  | 89%                                    |   |                                                       |                                                         |
|                              | 3. Bank Protection      | Bank erosion within the structures extent of influence does <u>not</u> exceed<br>15%. (See guidance for this table in EEP monitoring guidance<br>document)                        | 9                                              | 9                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |
|                              | 4. Habitat              | Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio $\geq$ 1.6 Rootwads/logs providing some cover at base-flow.                                      | 9                                              | 9                              |                                   |                                  | 100%                                   |   |                                                       |                                                         |

\*Riffles were not supplied with coarse substrate in the as-built condition. Aside from minor aggradation, riffles remain stable.

| Table 6   | Vegetation Condition Assessment |
|-----------|---------------------------------|
| <b></b> 1 |                                 |

| Planted Acreage                        | 8.51                                                                                        |                      |                      |                       |                     |                            |
|----------------------------------------|---------------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------|---------------------|----------------------------|
| Vegetation Category                    | Definitions                                                                                 | Mapping<br>Threshold | CCPV<br>Depiction    | Number of<br>Polygons | Combined<br>Acreage | % of<br>Planted<br>Acreage |
| 1. Bare Areas                          | Very limited cover of both woody and herbaceous material.                                   | 0.1 acres            | Pattern and<br>Color | 0                     | 0.00                | 0.0%                       |
| 2. Low Stem Density Areas              | Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. | 0.1 acres            | Pattern and<br>Color | 0                     | 0.00                | 0.0%                       |
|                                        |                                                                                             |                      | Total                | 0                     | 0.00                | 0.0%                       |
| 3. Areas of Poor Growth Rates or Vigor | Areas with woody stems of a size class that are obviously small given the monitoring year.  | 0.25 acres           | Pattern and<br>Color | 0                     | 0.00                | 0.0%                       |
|                                        |                                                                                             | Cu                   | mulative Total       | 0                     | 0.00                | 0.0%                       |

| Easement Acreage <sup>2</sup>               | 19.61                                                              |                      |                      |                       |                     |                             |
|---------------------------------------------|--------------------------------------------------------------------|----------------------|----------------------|-----------------------|---------------------|-----------------------------|
| Vegetation Category                         | Definitions                                                        | Mapping<br>Threshold | CCPV<br>Depiction    | Number of<br>Polygons | Combined<br>Acreage | % of<br>Easement<br>Acreage |
| 4. Invasive Areas of Concern <sup>4</sup>   | Areas or points (if too small to render as polygons at map scale). | 1000 SF              | Pattern and<br>Color | 0                     | 0.00                | 0.0%                        |
|                                             |                                                                    |                      |                      |                       |                     |                             |
| 5. Easement Encroachment Areas <sup>3</sup> | Areas or points (if too small to render as polygons at map scale). | none                 | Pattern and<br>Color | 0                     | 0.00                | 0.0%                        |



Photo Station 1 Downstream (Year 4 -10/21/2015)



Photo Station 1 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 2 Downstream (Year 4 -10/21/2015)



Photo Station 2 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 3 Downstream (Year 4 -10/21/2015)



Photo Station 3 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 4 Downstream (Year 4 -10/21/2015)



Photo Station 4 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 5 Downstream (Year 4 -10/21/2015)



Photo Station 5 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 6 Downstream (Year 4 -10/21/2015)



Photo Station 6 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 7 Downstream (Year 4 -10/21/2015)



Photo Station 7 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 8 Downstream (Year 4 -10/21/2015)



Photo Station 8 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 9 Downstream (Year 4 -10/21/2015)



Photo Station 9 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 10 Downstream (Year 4 -10/21/2015)



Photo Station 10 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 11 Downstream (Year 4 -10/21/2015)



Photo Station 11 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 12 Downstream (Year 4 -10/21/2015)



Photo Station 12 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 13 Downstream (Year 4 -10/21/2015)



Photo Station 13 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015


Photo Station 14 Downstream (Year 4 -10/21/2015)



Photo Station 14 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 15 Downstream (Year 4 -10/21/2015)



Photo Station 15 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 16 Downstream (Year 4 -10/21/2015)



Photo Station 16 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 17 Downstream (Year 4 -10/21/2015)



Photo Station 17 Upstream (Year 4 -10/21/2015) Coddle Creek Tributary (Indian Run) SEPI Engine EEP Project #94 Annual H December 2015



Photo Station 18 Downstream (Year 4 -10/21/2015)



Photo Station 18 Upstream (Year 4 -10/21/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 19 Downstream (Year 4 -10/22/2015)



Photo Station 19 Upstream (Year 4 -10/22/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 20 Downstream (Year 4 -10/22/2015)



Photo Station 20 Upstream (Year 4 -10/22/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 21 Downstream (Year 4 -10/22/2015)



Photo Station 21 Upstream (Year 4 -10/22/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 22 Downstream (Year 4 -10/22/2015)



Photo Station 22 Upstream (Year 4 -10/22/2015)

Coddle Creek Tributary (Indian Run) EEP Project #94 December 2015



Photo Station 23 Downstream (Year 4 -10/22/2015)



Photo Station 23 Upstream (Year 4 -10/22/2015)



Vegetation Plot 1 – 5m x 20m (Year 4 of 5) 9/21/2015



Vegetation Plot 2 – 10m x 10m (Year 4 of 5) 9/21/2015



Vegetation Plot 3 - 10m x 10m (Year 4 of 5) 9/21/2015



Vegetation Plot 4 – 5m x 20m (Year 4 of 5) 9/21/2015



Vegetation Plot 5 – 5m x 20m (Year 4 of 5) 9/22/2015



Vegetation Plot 6 – 10m x 10m (Year 4 of 5) 9/22/2015



Vegetation Plot 7 - 10m x 10m (Year 4 of 5) 9/22/2015



Vegetation Plot 8 - 10m x 10m (Year 4 of 5) 9/22/2015



Vegetation Plot 9 - 10m x 10m (Year 4 of 5) 9/22/2015



Vegetation Plot 10 – 10m x 10m (Year 4 of 5) 9/22/2015



Vegetation Plot 11 – 10m x 10m (Year 4 of 5) 9/22/2015

Appendix C Vegetation Plot Data

| Table 7. Vegetation Plot Mitigation Success Summary |                  |                  |  |  |  |  |  |  |
|-----------------------------------------------------|------------------|------------------|--|--|--|--|--|--|
| Coddle Creek Tributary (Indian Run) - 94            |                  |                  |  |  |  |  |  |  |
| Plot                                                | Planted Stems/Ac | Meeting Criteria |  |  |  |  |  |  |
| 1                                                   | 1093             | Yes              |  |  |  |  |  |  |
| 2                                                   | 486              | Yes              |  |  |  |  |  |  |
| 3                                                   | 728              | Yes              |  |  |  |  |  |  |
| 4                                                   | 607              | Yes              |  |  |  |  |  |  |
| 5                                                   | 769              | Yes              |  |  |  |  |  |  |
| 6                                                   | 769              | Yes              |  |  |  |  |  |  |
| 7                                                   | 405              | Yes              |  |  |  |  |  |  |
| 8                                                   | 283              | No               |  |  |  |  |  |  |
| 9                                                   | 526              | Yes              |  |  |  |  |  |  |
| 10                                                  | 607              | Yes              |  |  |  |  |  |  |
| 11                                                  | 486              | Yes              |  |  |  |  |  |  |

|                                    | Table 8. CVS Vegetation Plot Metadata                                                                                                                     |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                    | Coddle Creek Tributary (Indian Run) - 94                                                                                                                  |  |  |  |  |
| Report Prepared By                 | Kim Hamlin                                                                                                                                                |  |  |  |  |
| Date Prepared                      | 9/25/2015 11:07                                                                                                                                           |  |  |  |  |
| Date I repared                     |                                                                                                                                                           |  |  |  |  |
| database name                      | CoddleCr(IndianRun)_94_MY4_2015_CVS.mdb                                                                                                                   |  |  |  |  |
| database location                  | G:\Environmental\NCEEP Coddle Creek SMS\MY04\AnnualReport\Coddle_Cr(IndianRun)_94_MY4_2015_DRAFT\Support Files\3 - Vegetation Plot Data                   |  |  |  |  |
| computer name                      | W93                                                                                                                                                       |  |  |  |  |
| file size                          | 49975296                                                                                                                                                  |  |  |  |  |
| DESCRIPTION OF WORKSH              | EETS IN THIS DOCUMENT                                                                                                                                     |  |  |  |  |
| Metadata                           | Description of database file, the report worksheets, and a summary of project(s) and project data.                                                        |  |  |  |  |
| Proj, planted                      | Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.                                                         |  |  |  |  |
| Proj, total stems                  | Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.       |  |  |  |  |
| Plots                              | List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).                                                            |  |  |  |  |
| Vigor                              | Frequency distribution of vigor classes for stems for all plots.                                                                                          |  |  |  |  |
| Vigor by Spp                       | Frequency distribution of vigor classes listed by species.                                                                                                |  |  |  |  |
| Damage                             | List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.                                              |  |  |  |  |
| Damage by Spp                      | Damage values tallied by type for each species.                                                                                                           |  |  |  |  |
| Damage by Plot                     | Damage values tallied by type for each plot.                                                                                                              |  |  |  |  |
| Planted Stems by Plot and Spp      | A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.                                         |  |  |  |  |
| ALL Stems by Plot and spp          | A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded. |  |  |  |  |
| PROJECT SUMMARY                    |                                                                                                                                                           |  |  |  |  |
| Project Code                       | 94                                                                                                                                                        |  |  |  |  |
| project Name                       | Indian Run Tributary to Coddle Creek                                                                                                                      |  |  |  |  |
| Description                        | Stream Restoration                                                                                                                                        |  |  |  |  |
| River Basin                        | Yadkin-Pee Dee                                                                                                                                            |  |  |  |  |
| length(ft)                         | 2270                                                                                                                                                      |  |  |  |  |
| stream-to-edge width (ft)          | 100                                                                                                                                                       |  |  |  |  |
| area (sq m)                        | 42173.71                                                                                                                                                  |  |  |  |  |
| <b>Required Plots (calculated)</b> | 11                                                                                                                                                        |  |  |  |  |
| Sampled Plots                      | 11                                                                                                                                                        |  |  |  |  |

|                         |                       |               |             |         |          |         |         |          |        |             |       |         | Curre  | ent Plot 1 | Data (N | IY2015 | 2015)      |               |         |         |        |          |        |         |         |          |         |       |          |      |          |        | Annu    | 1al Mean | ns    |         |          |         |           |
|-------------------------|-----------------------|---------------|-------------|---------|----------|---------|---------|----------|--------|-------------|-------|---------|--------|------------|---------|--------|------------|---------------|---------|---------|--------|----------|--------|---------|---------|----------|---------|-------|----------|------|----------|--------|---------|----------|-------|---------|----------|---------|-----------|
|                         |                       |               | 094-HDR-    | -0001   | 094-HD   | DR-0002 | 094-    | HDR-00   | 03 09  | 94-HDR-0004 | 0     | 94-HDF  | R-0005 | 094        | -HDR-   | 0006   | 094-HDF    | <b>k-0007</b> | 094-H   | IDR-000 | 3 0    | )94-HDR  | -0009  | 094-H   | DR-0010 | 094-H    | DR-0011 | MY2   | 015 (201 | 5)   | MY2014   | (2014) | MY20    | 13 (2013 | 3)    | MY2012  | 2 (2012) | MY20    | 11 (2011) |
| Scientific Name         | Common Name           | Species Type  | PnoLS P-all | Т       | PnoLS P- | all T   | PnoLS   | SP-all T | PnoI   | LS P-all T  | Pno   | LS P-al | ll T   | PnoL       | S P-all | T I    | PnoLS P-al | I T           | PnoLS   | P-all T | Pno    | oLS P-al | 1 T    | PnoLS P | -all T  | PnoLS P  | -all T  | PnoLS | P-all T  | P    | noLS P-a | II T   | PnoLS   | P-all T  | Pn    | oLS P-a | all T    | PnoLS P | '-all T   |
| cer negundo             | boxelder              | Tree          |             |         |          |         |         |          |        |             |       |         |        | 2          |         | 9      |            | 14            | 4       |         |        |          | 2      |         |         | 1        |         |       |          | 28   |          | 1      | 3       |          | 1     |         |          | 9       |           |
| Acer rubrum             | red maple             | Tree          | 10 10       | ) 10    | 3        | 3       | 3 4     | 4        | 4      |             |       | 5       | 5      | 5          | 3 3     | 3      | 1          | 1 1           | 1       |         | 3      |          |        |         |         | 4        |         | 26    | 26       | 33   | 26       | 26 2   | 6 23    | 23       | 24    | 28      | 28 3     | 6 30    | 30        |
| Albizia julibrissin     | silktree              | Exotic        |             |         |          |         |         |          |        |             |       |         |        | 1          |         | 3      |            |               |         |         |        |          |        |         |         |          |         |       |          | 4    |          |        | 1       |          |       |         |          |         |           |
| Alnus serrulata         | hazel alder           | Shrub         | 5 5         | 5 13    |          |         | 2       |          | 3      | 2 2         | 3     | 5       | 5      | 5          | 2 2     | 3      | 5          | 5 5           | 5       |         | 1      | 1        | 1 1    | 1       | 1       | 2        |         | 3 21  | 21       | 41   | 21       | 21 3   | 2 21    | 21       | 31    | 21      | 21 2     | 1 19    | 19        |
| accharis halimifolia    | eastern baccharis     | Shrub         |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          |      |          |        | 1       |          | 1     |         |          |         |           |
| Betula nigra            | river birch           | Tree          |             | 112     |          |         | 3       |          | 6      |             | 8     | 3       | 3      | 4          | 3 3     | 3      |            |               |         |         | 2      | 4        | 4 6    | 2       | 2       | 4 7      | 7 1     | 2 19  | 19       | 160  | 19       | 19 19  | 4 19    | 19 8     | 865   | 20      | 20 67    | 4 28    | 28        |
| Callicarpa americana    | American beautyberr   | Shrub         |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          |      | 1        | 1      | 1 5     | 5        | 5     | 7       | 7        | 7 8     | 8         |
| Calycanthus floridus    | eastern sweetshrub    | Shrub         |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          |      |          |        | 1       | 1        | 1     | 1       | 1        | 1 2     | 2         |
| Carpinus caroliniana    | American hornbeam     | Tree          |             |         |          |         |         |          |        |             | 1     |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          | 1    |          |        |         |          |       |         |          |         |           |
| Celtis laevigata        | sugarberry            | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         | 3      |            |               |         |         |        | 1        | 1 1    |         |         |          |         | 1     | 1        | 4    |          |        | 1 1     | 1        | 1     | 10      | 10 1     | 0 15    | 15        |
| Cephalanthus occidental | lis common buttonbush | Shrub         |             |         |          |         | 1       |          |        |             |       |         |        |            |         | 1      |            |               |         |         |        |          |        |         |         |          |         |       |          | 2    |          |        |         |          |       |         |          |         |           |
| Cornus amomum           | silky dogwood         | Shrub         | 1 1         | 1 1     | 3        | 3       | 3       |          |        | 8 8         | 8     |         |        | 4          | 4 4     | 4      | 3          | 3 3           | 3 3     | 3       | 4      | 6        | 6 7    | 1       | 1       | 4 1      | 1       | 1 30  | 30       | 35   | 30       | 30 3   | 9 29    | 29       | 31    | 34      | 34 3     | 4 32    | 32        |
| Diospyros virginiana    | common persimmon      | Tree          |             |         |          |         | 1       | . 1      | 1      |             |       | 1       | 1      | 1          | 1 1     | 1      |            |               |         |         |        | 1        | 1 1    | 1       | 1       | 1        |         | 5     | 5        | 5    | 7        | 7      | 8 4     | 4        | 4     | 18      | 18 1     | 8 21    | 21        |
| raxinus pennsylvanica   | green ash             | Tree          | 6 6         | 6 6     | 4        | 4       | 4 7     | 7        | 7      | 2 2         | 2     | 2       | 2      | 2          |         | 1      |            | 2             | 2       |         |        |          |        |         |         |          |         | 21    | 21       | 24   | 21       | 21 2   | 2 20    | 20       | 21    | 21      | 21 2     | 1 21    | 21        |
| ıglans nigra            | black walnut          | Tree          |             |         |          |         |         |          |        |             |       |         |        | 1          | 1 1     | 1      |            |               |         |         |        |          |        |         |         |          |         | 1     | 1        | 2    | 2        | 2      | 2 2     | 2        | 2     | 5       | 5        | 5 6     | 6         |
| igustrum sinense        | Chinese privet        | Exotic        |             |         |          |         |         |          |        |             |       |         |        |            |         | 1      |            |               |         |         |        |          |        |         |         |          |         |       |          | 1    |          |        | 1       |          | 1     |         |          |         |           |
| iquidambar styraciflua. | a sweetgum            | Tree          |             |         |          |         |         |          | 4      |             | 2     |         | 1      | 1          |         | 6      |            |               |         |         |        |          |        |         |         |          |         |       |          | 23   |          | 4      | 7       |          | 17    |         |          | 9       |           |
| iriodendron tulipifera  | tuliptree             | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         | 1        |         |       |          | 1    |          |        | 1       |          |       |         |          |         |           |
| Iorella cerifera        | wax myrtle            | shrub         |             |         |          |         |         |          |        |             | 1     |         |        |            |         |        |            |               |         |         |        |          |        |         |         | 1        |         |       |          | 2    |          |        | 3       |          | 1     |         |          |         |           |
| lyssa sylvatica         | blackgum              | Tree          | 1 1         | 1 1     |          |         | 3       | 3        | 3      |             |       |         |        |            |         |        |            |               |         |         |        |          |        | 1       | 1       | 2        |         | 5     | 5        | 6    | 3        | 3      | 4 3     | 3        | 3     |         |          |         |           |
| Pinus taeda             | loblolly pine         | Tree          |             |         |          |         |         |          |        |             | 1     |         |        |            |         |        |            |               |         |         |        |          | 1      |         |         | 2        |         |       |          | 4    |          |        | 1       |          | 2     |         |          |         |           |
| Platanus occidentalis   | American sycamore     | Tree          |             | 84      | -        | 1       | 6       |          | 26     | 5           | 00    |         | 4      | -8         |         | 18     |            |               |         |         |        |          | 1      |         |         | 1        |         |       |          | 694  |          | 82     | 9       | (        | 679   |         | 153      | 6       |           |
| Populus deltoides       | eastern cottonwood    | Tree          |             | 44      | -        |         | 3       |          | 2      | 41.         | 67    |         |        | 4          |         | 4      |            | 71            | 1       | 1       | 128    |          | 105    |         |         | 71       | 1       | 3     |          | 487  |          | 53     | 8       | 1        | 174   |         | 66       | 2       | 6         |
| Prunus serotina         | black cherry          | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         | 1      |            |               |         |         |        |          |        |         |         |          |         |       |          | 1    |          |        |         |          |       |         |          |         |           |
| Quercus lyrata          | overcup oak           | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         | 1        | 1       | 1 1   | 1        | 1    | 1        | 1      | 1 1     | 1        | 2     |         |          |         |           |
| Quercus nigra           | water oak             | Tree          |             |         |          |         | 1       | 1        | 1      |             |       | 1       | 1      | 1          | 2 2     | 2      |            |               |         |         |        |          |        | 1       | 1       | 1        |         | 5     | 5        | 5    | 4        | 4      | 4 6     | 6        | 8     | 8       | 8        | 8 12    | 12        |
| Quercus phellos         | willow oak            | Tree          | 4 4         | 4 4     | 2        | 2       | 2 2     | 2 2      | 2      | 3 3         | 3     | 1       | 1      | 2          | 1 1     | 3      |            |               |         |         |        |          |        |         |         | 3        | 3       | 3 16  | 16       | 19   | 14       | 14 1   | 8 16    | 16       | 16    | 21      | 21 2     | 1 21    | 21        |
| Quercus rubra           | northern red oak      | Tree          |             |         |          |         | 1       |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          | 1    |          |        |         |          |       |         |          |         |           |
| alix nigra              | black willow          | Tree          |             |         |          |         | 1       |          |        |             | 2     |         | 1      | 5          | 1       | 1      | 1          | 1 1           | 1 4     | 4       | 5      |          |        | 8       | 8       | 10       |         | 2 13  | 15       | 27   | 12       | 14 2   | 8 14    | 16       | 24    | 11      | 13 1     | 8 6     | 8         |
| ambucus canadensis      | Common Elderberry     | Shrub         |             |         |          |         |         |          | 1      |             |       |         |        |            | 1 1     | 1      |            |               |         |         |        |          |        |         |         |          |         | 1     | 1        | 2    | 1        | 1      | 1 1     | 1        | 7     | 2       | 2        | 2 2     | 2         |
| Jlmus                   | elm                   | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          |      |          |        |         |          | 2     |         | 3        | 3       |           |
| Jlmus americana         | American elm          | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         | 1      |            |               |         |         |        |          |        |         |         |          |         |       |          | 1    |          |        |         |          |       |         |          |         |           |
| Jlmus rubra             | slippery elm          | Tree          |             |         |          |         |         |          |        |             |       |         |        |            |         |        |            |               |         |         |        |          |        |         |         |          |         |       |          |      |          |        |         |          | 31    |         |          |         |           |
|                         |                       | Stem count    | 27 27       | 275     | 12       | 12 3    | 9 18    | 3 18     | 60     | 15 15 572   | .7    | 18      | 19 9   | 2 1        | 8 19    | 70     | 10         | 10 97         | 7 7     | 7       | 143    | 13 1     | 3 125  | 15      | 15 1    | 05 12    | 12 3    | 5 165 | 167 1    | 1614 | 162 1    | 64 181 | 6 166   | 168 19   | 954   | 207 2   | 209 312  | 5 223   | 225 8     |
|                         |                       | size (ares)   | 1           |         | 1        | 1       |         | 1        |        | 1           |       | 1       |        |            | 1       |        | 1          |               |         | 1       |        | 1        |        |         | 1       |          | 1       |       | 11       |      | 11       |        |         | 11       |       | 1       | 1        |         | 11        |
|                         |                       | size (ACRES)  | 0.02        |         | 0.0      | 02      |         | 0.02     |        | 0.02        |       | 0.02    | 2      |            | 0.02    |        | 0.02       | 2             |         | 0.02    |        | 0.02     | 2      | 0       | 0.02    | 0        | .02     |       | 0.27     |      | 0.2      | 7      |         | 0.27     |       | 0.2     | 27       | (       | 0.27      |
|                         |                       | Species count | 6 6         | 59      | 4        | 4 1     | 1 6     | 6        | 12     | 4 4         | 12    | 7       | 8 1    | 4          | 9 10    | 21     | 4          | 4 7           | 7 2     | 2       | 6      | 5        | 5 9    | 7       | 7       | 4 4      | 4       | 7 14  | 14       | 28   | 14       | 14 2   | 5 16    | 16       | 26    | 14      | 14 1     | 9 14    | 14        |
|                         | Ste                   | ms per ACRE   | 1093 1093   | 3 11129 | 485.6    | 486 157 | 8 728.4 | 728 2    | 2428 6 | 07 607 231  | 75 72 | 8.4 70  | 69 372 | 3 728.4    | 4 769   | 2833   | 404.7 40   | 05 3925       | 5 283.3 | 283 57  | 787 52 | 26.1 52  | 6 5059 | 607     | 607 42  | 49 485.6 | 486 141 | 6 607 | 614 5    | 5937 | 596 6    | 03 668 | 1 610.7 | 618 71   | 189 7 | 61.5 7  | 769 1149 | 7 820.4 | 828 32    |

## Table 9. Planted and Total Stem Counts (Species by Plot with Annual Means) EEP Project Code 94. Project Name: Indian Run Tributary to Coddle Creek

Appendix D Stream Survey Data

| Station | Elevation |
|---------|-----------|
| 0.00    | 547.61    |
| 2.20    | 547.19    |
| 3.56    | 546.98    |
| 6.42    | 545.88    |
| 11.07   | 542.78    |
| 13.61   | 542.66    |
| 16.22   | 542.63    |
| 17.82   | 542.94    |
| 20.14   | 542.8     |
| 20.20   | 542.79    |
| 21.84   | 542.48    |
| 24.58   | 540.35    |
| 26.50   | 540.36    |
| 28.22   | 540.43    |
| 29.22   | 540.88    |
| 31.74   | 541.48    |
| 32.26   | 541.6     |
| 34.87   | 541.82    |
| 38.35   | 542.74    |
| 45.35   | 542.97    |
| 48.56   | 542.62    |
| 50.00   | 542.8     |
| 52.84   | 543.37    |
| 58.66   | 543.37    |
| 67.14   | 543.41    |
| 80.11   | 543.14    |
| 87.64   | 543.25    |
| 94.36   | 543.5     |
| 99.38   | 544.66    |
| 104.04  | 545.73    |
| 107.49  | 546.53    |
| 110.14  | 549.73    |

| Reach                 | Indian Run, Upper Reach           |
|-----------------------|-----------------------------------|
| River Basin           | Yadkin/Pee Dee                    |
| Cross Section ID      | XSC-1, Riffle, Upper Reach, 18+40 |
| Drainage Area (Sq Mi) | 1.5                               |
| Date                  | 10/21/2015                        |
| Observers             | P. Beach, C. Flowers              |

| SUMMARY DATA                                   |        |  |  |  |  |
|------------------------------------------------|--------|--|--|--|--|
| Baseline Bankfull Datum, ft                    | 542.62 |  |  |  |  |
| Bankfull Cross Sectional Area, ft <sup>2</sup> | 20.72  |  |  |  |  |
| Bankfull Width, ft                             | 16.51  |  |  |  |  |
| Max Depth at Bankfull, ft                      | 2.27   |  |  |  |  |
| Mean Depth at Bankfull, ft                     | 1.25   |  |  |  |  |
| Width/Depth Ratio                              | 13.16  |  |  |  |  |
| Flood Prone Width, ft                          | 92     |  |  |  |  |
| Flood Prone Area Elevation                     | 544.89 |  |  |  |  |
| Entrenchment Ratio                             | 5.57   |  |  |  |  |
| Bank Height Ratio                              | 0.94   |  |  |  |  |





| Station | Elevation |
|---------|-----------|
| 0       | 547.59    |
| 1.01    | 547.25    |
| 2.43    | 546.71    |
| 4.85    | 545.37    |
| 8.44    | 543.58    |
| 11.36   | 541.66    |
| 12.24   | 541.27    |
| 15.24   | 541.02    |
| 17.1    | 540.99    |
| 17.87   | 540.78    |
| 17.98   | 540.86    |
| 18.79   | 540.24    |
| 19.32   | 539.66    |
| 19.74   | 538.15    |
| 21.2    | 537.4     |
| 23.91   | 537.52    |
| 26.09   | 538.02    |
| 27.3    | 538.29    |
| 28.15   | 539.42    |
| 29.23   | 540.22    |
| 30.67   | 540.59    |
| 33.01   | 540.68    |
| 36.61   | 540.57    |
| 40.72   | 540.75    |
| 46.83   | 540.83    |
| 50.4    | 540.89    |
| 56.95   | 541.14    |
| 62.67   | 541.72    |
| 64.77   | 542.33    |
| 70.51   | 544.01    |
| 77.21   | 545.97    |
| 80.64   | 547.48    |
| 84.07   | 548.99    |

| River Basin<br>Cross Section ID<br>Drainage Area (Sq Mi)<br>Date<br>Observers | Yadkin/Pee Dee<br>XSC-2, Pool, Upper Reach, 20+62 |                | TOPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drainage Area (Sq Mi)<br>Date                                                 |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                                                                          | 1.5                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               | 1.5                                               |                | Mar and a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observers                                                                     | 10/21/2015                                        |                | 1 Alexandress and the second s |
| Observers                                                                     | P. Beach, C. Flowers                              |                | A State of the second s |
|                                                                               |                                                   |                | AND REAL PARTY FARMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SI                                                                            | UMMARY DATA                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Baseline Bankfull Datum, ft                                                   | 541.18                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bankfull Cross Sectional Area, ft <sup>2</sup>                                | 35.52                                             |                | A STATISTICS OF A STATISTICS O |
| Bankfull Width, ft                                                            | 40                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max Depth at Bankfull, ft                                                     | 3.78                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mean Depth at Bankfull, ft                                                    | 0.89                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Width/Depth Ratio                                                             | 45.05                                             |                | - A BAR AND A STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flood Prone Width, ft                                                         | 67.5                                              |                | CARLES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flood Prone Area Elevation                                                    | 544.96                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Entrenchment Ratio                                                            | 1.69                                              | - Citrace - /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bank Height Ratio                                                             | 0.95                                              | Stream Type C4 | Sta. 20+62 Looking Downstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 550                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 548                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 547                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 546 +                                                                       |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Elevation (feet)                                                              | ·                                                 | ++++++         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| g 544                                                                         |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ······································                                        |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 542                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 540                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               | ·                                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 539                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                               |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 539                                                                           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 539<br>538                                                                    |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Station | Elevation |
|---------|-----------|
| 0       | 545.28    |
| 2.34    | 544.25    |
| 5.58    | 543.35    |
| 9.81    | 541.9     |
| 10.8    | 541.33    |
| 13.15   | 540.1     |
| 15.19   | 539.26    |
| 18.74   | 538.7     |
| 21.07   | 538.19    |
| 23.75   | 537.46    |
| 24.75   | 536.64    |
| 26.09   | 536.65    |
| 27.29   | 536.69    |
| 28.96   | 537.52    |
| 32.02   | 537.61    |
| 33.27   | 537.69    |
| 33.86   | 536.98    |
| 35.43   | 537.26    |
| 37.8    | 538.37    |
| 38.86   | 539.12    |
| 41.11   | 538.88    |
| 43.37   | 539.15    |
| 51.6    | 543.02    |
| 55.7    | 544.54    |
| 57.16   | 546.16    |

| Reach                                          | Indian Run, Upper Reach           |
|------------------------------------------------|-----------------------------------|
| River Basin                                    | Yadkin/Pee Dee                    |
| Cross Section ID                               | XSC-3, Riffle, Upper Reach, 25+40 |
| Drainage Area (Sq Mi)                          | 1.5                               |
| Date                                           | 10/21/2015                        |
| Observers                                      | P. Beach, C. Flowers              |
|                                                |                                   |
| SU                                             | JMMARY DATA                       |
| Baseline Bankfull Datum, ft                    | 539.00                            |
| Bankfull Cross Sectional Area, ft <sup>2</sup> | 34.75                             |
| Bankfull Width, ft                             | 21.86                             |
| Max Depth at Bankfull, ft                      | 2.36                              |
| Mean Depth at Bankfull, ft                     | 1.59                              |
| Width/Depth Ratio                              | 13.75                             |
| Flood Prone Width, ft                          | 37                                |
| Flood Prone Area Elevation                     | 541                               |
| Entrenchment Ratio                             | 1.69                              |
|                                                | 1.05                              |





| Station | Elevation |
|---------|-----------|
| 0       | 545.57    |
| 1.56    | 544.36    |
| 3.54    | 543.47    |
| 6.9     | 542.17    |
| 9.37    | 541.07    |
| 12.03   | 540.04    |
| 14.55   | 539.29    |
| 17.25   | 538.97    |
| 18.81   | 538.77    |
| 20.52   | 537.96    |
| 21.39   | 537.84    |
| 22.37   | 535.92    |
| 24.68   | 533.81    |
| 29.52   | 534.71    |
| 31.71   | 535.71    |
| 33.68   | 537.69    |
| 36.62   | 537.98    |
| 38.51   | 537.88    |
| 42.52   | 538.04    |
| 47.57   | 538.29    |
| 51.5    | 538.45    |
| 54.53   | 539.23    |
| 66.07   | 545.96    |

| Reach                 | Indian Run, Upper Reach         |
|-----------------------|---------------------------------|
| River Basin           | Yadkin/Pee Dee                  |
| Cross Section ID      | XSC-4, Pool, Upper Reach, 25+92 |
| Drainage Area (Sq Mi) | 1.5                             |
| Date                  | 10/21/2015                      |
| Observers             | P. Beach, C. Flowers            |

| SUMMARY DATA                                   |        |  |  |
|------------------------------------------------|--------|--|--|
| Baseline Bankfull Datum, ft 538.77             |        |  |  |
| Bankfull Cross Sectional Area, ft <sup>2</sup> | 57.6   |  |  |
| Bankfull Width, ft                             | 34     |  |  |
| Max Depth at Bankfull, ft                      | 4.96   |  |  |
| Mean Depth at Bankfull, ft                     | 1.69   |  |  |
| Width/Depth Ratio                              | 20.07  |  |  |
| Flood Prone Width, ft                          | 59     |  |  |
| Flood Prone Area Elevation                     | 543.73 |  |  |
| Entrenchment Ratio                             | 1.74   |  |  |
| Bank Height Ratio                              | 1      |  |  |





| Station | Elevation |
|---------|-----------|
| 0       | 541.52    |
| 2.26    | 541.16    |
| 7.51    | 540.11    |
| 16.35   | 538.19    |
| 23.23   | 536.67    |
| 28.48   | 535.91    |
| 34.39   | 535.83    |
| 44.24   | 535.42    |
| 54.99   | 535.8     |
| 68      | 535.96    |
| 85.02   | 536.19    |
| 97.24   | 536.47    |
| 103.76  | 536.13    |
| 109.08  | 536.64    |
| 112.19  | 536.78    |
| 114.3   | 536.13    |
| 115.99  | 535.72    |
| 117.3   | 534.98    |
| 119.41  | 534.82    |
| 119.88  | 534.21    |
| 121.16  | 534.19    |
| 122.05  | 534.29    |
| 123.43  |           |
| 125.97  | 535.68    |
| 128.59  | 535.29    |
| 130.7   | 535.69    |
| 132.4   | 536.17    |
| 136.9   | 536.24    |
| 143.57  | 536.14    |
| 149.67  | 535.98    |
| 156.19  |           |
| 161.85  | 538.77    |

| Reach                 | Indian Run, Lower Reach           |
|-----------------------|-----------------------------------|
| River Basin           | Yadkin/Pee Dee                    |
| Cross Section ID      | XSC-5, Riffle, Lower Reach, 11+15 |
| Drainage Area (Sq Mi) | 1.5                               |
| Date                  | 10/22/2015                        |
| Observers             | P. Beach, C. Flowers, K. Hamlin   |

| SUMMARY DATA                                   |       |  |  |  |
|------------------------------------------------|-------|--|--|--|
| Baseline Bankfull Datum, ft 536.34             |       |  |  |  |
| Bankfull Cross Sectional Area, ft <sup>2</sup> | 17.21 |  |  |  |
| Bankfull Width, ft                             | 22.9  |  |  |  |
| Max Depth at Bankfull, ft                      | 2.15  |  |  |  |
| Mean Depth at Bankfull, ft                     | 0.75  |  |  |  |
| Width/Depth Ratio                              | 30.47 |  |  |  |
| Flood Prone Width, ft                          | 145.5 |  |  |  |
| Flood Prone Area Elevation                     | 538.5 |  |  |  |
| Entrenchment Ratio                             | 6.35  |  |  |  |
| Bank Height Ratio                              | 0.9   |  |  |  |





| Station | Elevation |
|---------|-----------|
| 0       | 540.87    |
| 0.98    | 540.55    |
| 4.57    | 539.49    |
| 8.92    | 537.99    |
| 13.59   | 536.23    |
| 17.73   | 535.98    |
| 20.95   | 535.87    |
| 22.29   | 535.89    |
| 23.82   | 534.97    |
| 24.4    | 534.58    |
| 25.43   | 532.97    |
| 26.67   | 532.77    |
| 28.44   | 532.62    |
| 30.09   | 532.67    |
| 31.94   | 532.54    |
| 32.63   | 532.84    |
| 32.74   | 533.09    |
| 33.02   | 533.25    |
| 33.36   | 534.18    |
| 34.17   | 534.43    |
| 34.94   | 534.83    |
| 35.53   |           |
| 36.89   | 535.01    |
| 48.29   | 535.68    |
| 54.73   | 535.66    |
| 63.05   | 536.08    |
| 72.33   | 535.58    |
| 84.2    | 535.69    |
| 91.69   | 535.62    |
| 103.58  | 537.36    |
| 113.82  | 539.95    |

| Reach                                                              | Indian Run, Lower Reach                                               |              | A REAL PROPERTY AND A REAL PROPERTY AND A | ALC: NOT ALC: N |                   |                | Carles .  | 1000        |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|-------------------------------------------|-----------------|-------------------|----------------|-----------|-------------|
| River Basin                                                        | Yadkin/Pee Dee                                                        |              | s lit                                     | 13 76           | 15                | X.36           | -         | C X         |
| Cross Section ID                                                   | XSC-6, Pool, Lower Reach, 13+10                                       |              | 6 / //                                    | E. Max          | New 1             | 1.22           |           |             |
| Drainage Area (Sq Mi)                                              | 1.5                                                                   |              |                                           | 11-             | A                 | a second       |           | ALC COL     |
| Date                                                               | 10/22/2015                                                            | a.'          | AT LAND                                   | 27 M            |                   |                | A total   |             |
| Observers                                                          | P. Beach, C. Flowers, K. Hamlin                                       |              |                                           | K /             | 100               |                |           | <b>动</b> 关于 |
| c                                                                  | UMMARY DATA                                                           |              | 1. 19                                     | 1 1             | - Anter           |                |           |             |
| Saseline Bankfull Datum, ft                                        | 535.56                                                                | 9 M          | 1.11                                      | 11              |                   |                |           |             |
| Bankfull Cross Sectional Area, ft <sup>2</sup>                     | 37.45                                                                 | 1            | 1734                                      | 201-3-          |                   | CO.            | The state |             |
| Bankfull Width, ft                                                 | 26                                                                    |              | XAD                                       | 1               | 100               | AN EN          |           |             |
| Max Depth at Bankfull, ft                                          | 3.02                                                                  |              | AVOL .                                    |                 | the second second | NIS KAT        | and the   | Inch        |
| Mean Depth at Bankfull, ft                                         | 1.44                                                                  |              | AT L.                                     |                 |                   | A STAN         | N TO A    |             |
| Width/Depth Ratio                                                  | 18.05                                                                 | 200          |                                           |                 |                   | MT L           |           |             |
| Flood Prone Width, ft                                              | 100.5                                                                 | 20           |                                           |                 | - 5-              | a star         | -         | A CALL      |
| Flood Prone Area Elevation                                         | 538.58                                                                | 12           |                                           |                 | THE PER           | A DE LA        | a alter   | C.st.       |
| Entrenchment Ratio                                                 | 3.87                                                                  |              |                                           | No. of Man      |                   | Con the second |           | - Bile      |
| Bank Height Ratio                                                  | 1.04                                                                  | Stream 7     | Гуре С4                                   | Ļ               | Sta. 13-          | +10 Lookin     | g Downst  | ream        |
|                                                                    | Indian Run X<br>– – Baseline Bankfull Datum – Bas                     |              |                                           | 72 — N          | 4Y3 —             | MY4            |           |             |
| 541                                                                |                                                                       |              | MY                                        | 72 — N          | 1Y3 —             | — MY4          |           |             |
| 541                                                                |                                                                       |              | MY                                        | /2 — N          | 1Y3 —             | — MY4          |           |             |
|                                                                    |                                                                       |              | MY                                        | /2 — N          | 1Y3 —             | — MY4          |           |             |
| 540                                                                |                                                                       |              | MY                                        | (2 — N          | 1Y3 —             | — MY4          |           |             |
| 540                                                                |                                                                       |              | MY                                        | (2 — N          | 1Y3 —             | — MY4          |           |             |
| 540                                                                |                                                                       |              | MY                                        |                 | 1Y3 —             | MY4            |           |             |
| 540<br>539<br>538<br>537<br>537<br>536<br>536                      |                                                                       |              | MY                                        | (2 — N          | 1Y3 -             | MY4            |           |             |
| 540<br>539<br>538<br>537<br>536<br>536<br>535                      |                                                                       |              | MY                                        |                 | 1Y3 -             | MY4            |           |             |
| 540<br>539<br>538<br>537<br>537<br>536<br>536                      |                                                                       |              | MY                                        |                 | 4Y3 —             |                |           |             |
| 540<br>539<br>538<br>537<br>536<br>536<br>535                      |                                                                       |              | MY                                        |                 | 1Y3 —             | MY4            |           |             |
| 540<br>539<br>538<br>537<br>536<br>535<br>534                      |                                                                       |              | MY                                        |                 | 1Y3 —             | MY4            |           |             |
| 540<br>539<br>538<br>537<br>536<br>536<br>535<br>534<br>533        | Baseline Bankfull Datum — Bas                                         |              |                                           | (2 — N          | 1Y3 -             |                | 105 1     |             |
| 540<br>539<br>538<br>537<br>536<br>535<br>535<br>534<br>533<br>532 | Baseline Bankfull DatumBaseline Bankfull DatumBaseline Bankfull Datum | seline — MY1 |                                           |                 |                   |                | 105 11    |             |

| Station | Elevation |
|---------|-----------|
| 0       | 539.9     |
| 0.12    | 539.45    |
| 1.57    | 539.31    |
| 2.8     | 538.81    |
| 7.23    | 536.55    |
| 10.71   | 534.82    |
| 11.73   | 534.71    |
| 14.49   | 534.68    |
| 16.81   | 534.34    |
| 17.88   | 534.02    |
| 18.23   | 533.42    |
| 18.71   | 533.07    |
| 19.32   | 531.61    |
| 21.64   |           |
| 22.23   | 531.19    |
| 24.17   | 531.23    |
| 27.19   | 531.21    |
| 27.27   | 533.46    |
| 28.02   | 533.57    |
| 29.44   | 533.49    |
| 35.82   | 533.76    |
| 42.8    | 534.65    |
| 47.77   | 534.77    |
| 61.22   | 534.66    |
| 75.28   | 534.51    |
| 89.32   | 534.74    |
| 92.3    | 535.33    |
| 104.12  | 538.85    |
| 106.04  | 539       |

| Reach                                            | Indian Run, Lower Reach         |
|--------------------------------------------------|---------------------------------|
| River Basin Yadkin/Pee Dee                       |                                 |
| Cross Section ID XSC-7, Pool, Lower Reach, 15+89 |                                 |
| Drainage Area (Sq Mi) 1.5                        |                                 |
| Date                                             | 10/22/2015                      |
| Observers                                        | P. Beach, C. Flowers, K. Hamlin |
|                                                  |                                 |
| SU                                               | MMARY DATA                      |
| SU.<br>Baseline Bankfull Datum, ft               | MMARY DATA 534.62               |
|                                                  |                                 |
| Baseline Bankfull Datum, ft                      | 534.62                          |

1.40

20.29

98

538.1

3.46

1

Mean Depth at Bankfull, ft

Flood Prone Area Elevation

Width/Depth Ratio

Flood Prone Width, ft

Entrenchment Ratio

**Bank Height Ratio** 





| Station | Elevation |
|---------|-----------|
| 0       | 538.91    |
| 2.54    | 537.9     |
| 4.48    | 537.44    |
| 6.27    | 537.17    |
| 26.17   | 534.42    |
| 38.71   | 534.35    |
| 47.7    | 534.22    |
| 55.04   | 533.95    |
| 58.91   | 534.18    |
| 62.11   | 533.72    |
| 63.01   | 533.24    |
| 64.24   | 532.75    |
| 64.98   | 532.01    |
| 66.93   | 531.07    |
| 68.84   | 531.16    |
| 70.07   | 532.74    |
| 70.52   | 532.77    |
| 73.07   | 532.54    |
| 74.37   | 533.08    |
| 77.16   | 533.88    |
| 80.63   | 534.17    |
| 86.18   | 534.29    |
| 97.72   | 534.18    |
| 108.43  | 534.52    |
| 112.18  | 535.11    |
| 121.76  | 537.02    |
| 130.82  | 538.94    |

| Reach                                          | Indian Run, Lower Reach           |  |  |
|------------------------------------------------|-----------------------------------|--|--|
| River Basin                                    | Yadkin/Pee Dee                    |  |  |
| Cross Section ID                               | XSC-8, Riffle, Lower Reach, 16+50 |  |  |
| Drainage Area (Sq Mi)                          | 1.5                               |  |  |
| Date                                           | 10/22/2015                        |  |  |
| Observers                                      | P. Beach, C.Flowers, K. Hamlin    |  |  |
|                                                |                                   |  |  |
| SU                                             | MMARY DATA                        |  |  |
| Baseline Bankfull Datum, ft 534.36             |                                   |  |  |
| Bankfull Cross Sectional Area, ft <sup>2</sup> | 29.3                              |  |  |
| Bankfull Width, ft                             | 38.48                             |  |  |
| Max Depth at Bankfull, ft                      | 3.29                              |  |  |
| Mean Depth at Bankfull, ft                     | 0.76                              |  |  |
| Width/Depth Ratio                              | 50.54                             |  |  |
| Flood Prone Width, ft                          | 121                               |  |  |
| Flood Prone Area Elevation                     | 537.65                            |  |  |
| Entrenchment Ratio                             | 3.14                              |  |  |
|                                                | 0.95                              |  |  |





\*The pins for XS8 were not located in the field. The location of the cross section for MY4 is approximate and was set during MY2.





Coddle Creek Triburaty - Indian Run - UR - XS1 Riffle Pebble Count

Location: STA 18+40

| Inches    | Particle    | Millimeters |           | Count | % Total | % Cum. |
|-----------|-------------|-------------|-----------|-------|---------|--------|
|           | Silt/Clay   | < 0.062     |           | 20    | 20      | 20     |
|           | Very Fine   | 0.062-0.125 | S         | 2     | 2       | 22     |
|           | Fine        | 0.125-0.25  | А         | 0     | 0       | 22     |
|           | Medium      | 0.25-0.50   | Ν         | 0     | 0       | 22     |
|           | Coarse      | 0.50-1.0    | D         | 23    | 23      | 45     |
| 0.04-0.08 | Very Coarse | 1.0-2       |           | 7     | 7       | 52     |
| 0.08-0.16 | Very Fine   | 2-4         |           | 1     | 1       | 53     |
| 0.16-0.22 | Fine        | 4-5.7       | G         | 4     | 4       | 57     |
| 0.22-0.31 | Fine        | 5.7-8       | R         | 2     | 2       | 59     |
| 0.31-0.44 | Medium      | 8-11.3      | K<br>A    | 6     | 6       | 65     |
| 0.44-0.63 | Medium      | 11.3-16     | A<br>V    | 8     | 8       | 73     |
| 0.63-0.89 | Coarse      | 16-22.6     | • E       | 14    | 14      | 87     |
| 0.89-1.26 | Coarse      | 22.6-32     |           | 5     | 5       | 92     |
| 1.26-1.77 | Very Coarse | 32-45       |           | 1     | 1       | 93     |
| 1.77-2.5  | Very Coarse | 45-64       |           | 5     | 5       | 98     |
| 2.5-3.5   | Small       | 64-90       | C<br>0    | 1     | 1       | 99     |
| 3.5-5.0   | Small       | 90-128      | B         | 0     | 0       | 99     |
| 5.0-7.1   | Medium      | 128-180     | B<br>L    | 1     | 1       | 100    |
| 7.1-10.1  | Large       | 180-256     | Е         | 0     | 0       | 100    |
| 10.1-14.3 | Small       | 256-362     | B<br>O    | 0     | 0       | 100    |
| 14.3-20   | Small       | 362-512     | U         | 0     | 0       | 100    |
| 20-40     | Medium      | 512-1024    | L<br>D    | 0     | 0       | 100    |
| 40-80     | Large       | 1024-2048   | E<br>R    | 0     | 0       | 100    |
|           | Bedrock     | Bedrock     | Bedrock   | 0     | 0       | 100    |
|           |             | Tota        | l Counted | 100   |         |        |

| Summary Data |    |  |
|--------------|----|--|
| D50          | 2  |  |
| D84          | 21 |  |
| D95          | 50 |  |





Coddle Creek Tributary - Indian Run -UR - XS3 Riffle Pebble Count

Location: STA 25+40

| Inches    | Particle    | Millimeters |           | Count | % Total | % Cum. |
|-----------|-------------|-------------|-----------|-------|---------|--------|
|           | Silt/Clay   | < 0.062     |           | 0     | 0       | 0      |
|           | Very Fine   | 0.062-0.125 | S         | 0     | 0       | 0      |
|           | Fine        | 0.125-0.25  | А         | 0     | 0       | 0      |
|           | Medium      | 0.25-0.50   | Ν         | 0     | 0       | 0      |
|           | Coarse      | 0.50-1.0    | D         | 4     | 4       | 4      |
| 0.04-0.08 | Very Coarse | 1.0-2       |           | 5     | 5       | 9      |
| 0.08-0.16 | Very Fine   | 2-4         |           | 10    | 10      | 19     |
| 0.16-0.22 | Fine        | 4-5.7       | G         | 7     | 7       | 26     |
| 0.22-0.31 | Fine        | 5.7-8       | R         | 10    | 10      | 36     |
| 0.31-0.44 | Medium      | 8-11.3      | K<br>A    | 20    | 20      | 56     |
| 0.44-0.63 | Medium      | 11.3-16     | A<br>V    | 17    | 17      | 73     |
| 0.63-0.89 | Coarse      | 16-22.6     | v<br>E    | 18    | 18      | 91     |
| 0.89-1.26 | Coarse      | 22.6-32     |           | 4     | 4       | 95     |
| 1.26-1.77 | Very Coarse | 32-45       |           | 3     | 3       | 98     |
| 1.77-2.5  | Very Coarse | 45-64       |           | 0     | 0       | 98     |
| 2.5-3.5   | Small       | 64-90       | C<br>0    | 2     | 2       | 100    |
| 3.5-5.0   | Small       | 90-128      | В         | 0     | 0       | 100    |
| 5.0-7.1   | Medium      | 128-180     | B<br>L    | 0     | 0       | 100    |
| 7.1-10.1  | Large       | 180-256     | E<br>E    | 0     | 0       | 100    |
| 10.1-14.3 | Small       | 256-362     | B<br>O    | 0     | 0       | 100    |
| 14.3-20   | Small       | 362-512     | U<br>L    | 0     | 0       | 100    |
| 20-40     | Medium      | 512-1024    | D         | 0     | 0       | 100    |
| 40-80     | Large       | 1024-2048   | E<br>R    | 0     | 0       | 100    |
|           | Bedrock     | Bedrock     | Bedrock   | 0     | 0       | 100    |
|           |             | Tota        | l Counted | 100   |         |        |

| Summa | ry Data |
|-------|---------|
| D50   | 10      |
| D84   | 20      |
| D95   | 32      |





## Location: STA 11+15

| Inches    | Particle    | Millimeters |           | Count | % Total | % Cum. |
|-----------|-------------|-------------|-----------|-------|---------|--------|
|           | Silt/Clay   | < 0.062     |           | 0     | 0       | 0      |
|           | Very Fine   | 0.062-0.125 | S         | 0     | 0       | 0      |
|           | Fine        | 0.125-0.25  | А         | 0     | 0       | 0      |
|           | Medium      | 0.25-0.50   | N         | 0     | 0       | 0      |
|           | Coarse      | 0.50-1.0    | D         | 18    | 18      | 18     |
| 0.04-0.08 | Very Coarse | 1.0-2       |           | 2     | 2       | 20     |
| 0.08-0.16 | Very Fine   | 2-4         |           | 16    | 16      | 36     |
| 0.16-0.22 | Fine        | 4-5.7       | C         | 9     | 9       | 45     |
| 0.22-0.31 | Fine        | 5.7-8       | G         | 6     | 6       | 51     |
| 0.31-0.44 | Medium      | 8-11.3      | R<br>A    | 11    | 11      | 62     |
| 0.44-0.63 | Medium      | 11.3-16     |           | 9     | 9       | 71     |
| 0.63-0.89 | Coarse      | 16-22.6     | V<br>E    | 13    | 13      | 84     |
| 0.89-1.26 | Coarse      | 22.6-32     |           | 9     | 9       | 93     |
| 1.26-1.77 | Very Coarse | 32-45       | L         | 4     | 4       | 97     |
| 1.77-2.5  | Very Coarse | 45-64       |           | 1     | 1       | 98     |
| 2.5-3.5   | Small       | 64-90       | C         | 2     | 2       | 100    |
| 3.5-5.0   | Small       | 90-128      | O<br>B    | 0     | 0       | 100    |
| 5.0-7.1   | Medium      | 128-180     | B<br>L    | 0     | 0       | 100    |
| 7.1-10.1  | Large       | 180-256     | L<br>E    | 0     | 0       | 100    |
| 10.1-14.3 | Small       | 256-362     | B<br>O    | 0     | 0       | 100    |
| 14.3-20   | Small       | 362-512     | U<br>L    | 0     | 0       | 100    |
| 20-40     | Medium      | 512-1024    | D         | 0     | 0       | 100    |
| 40-80     | Large       | 1024-2048   | E<br>R    | 0     | 0       | 100    |
|           | Bedrock     | Bedrock     | Bedrock   | 0     | 0       | 100    |
|           |             | Tota        | l Counted | 100   |         |        |

| Summa | ry Data |
|-------|---------|
| D50   | 8       |
| D84   | 22.6    |
| D95   | 35      |



Particle Size (mm)

0.1

Coddle Creek Tributary - Indian Run - LR - XS8 Riffle Pebble Count

## Location: STA 16+50

| Inches    | Particle    | Millimeters |            | Count | % Total | % Cum. |
|-----------|-------------|-------------|------------|-------|---------|--------|
|           | Silt/Clay   | < 0.062     |            | 28    | 28      | 28     |
|           | Very Fine   | 0.062-0.125 | S          | 36    | 36      | 64     |
|           | Fine        | 0.125-0.25  | А          | 0     | 0       | 64     |
|           | Medium      | 0.25-0.50   | N          | 0     | 0       | 64     |
|           | Coarse      | 0.50-1.0    | D          | 6     | 6       | 70     |
| 0.04-0.08 | Very Coarse | 1.0-2       |            | 0     | 0       | 70     |
| 0.08-0.16 | Very Fine   | 2-4         |            | 1     | 1       | 71     |
| 0.16-0.22 | Fine        | 4-5.7       | G          | 3     | 3       | 74     |
| 0.22-0.31 | Fine        | 5.7-8       | R          | 2     | 2       | 76     |
| 0.31-0.44 | Medium      | 8-11.3      | R<br>A     | 13    | 13      | 89     |
| 0.44-0.63 | Medium      | 11.3-16     | A<br>V     | 8     | 8       | 97     |
| 0.63-0.89 | Coarse      | 16-22.6     | V<br>E     | 2     | 2       | 99     |
| 0.89-1.26 | Coarse      | 22.6-32     |            | 1     | 1       | 100    |
| 1.26-1.77 | Very Coarse | 32-45       |            | 0     | 0       | 100    |
| 1.77-2.5  | Very Coarse | 45-64       |            | 0     | 0       | 100    |
| 2.5-3.5   | Small       | 64-90       | C<br>O     | 0     | 0       | 100    |
| 3.5-5.0   | Small       | 90-128      | B          | 0     | 0       | 100    |
| 5.0-7.1   | Medium      | 128-180     | B<br>L     | 0     | 0       | 100    |
| 7.1-10.1  | Large       | 180-256     | E<br>E     | 0     | 0       | 100    |
| 10.1-14.3 | Small       | 256-362     | B<br>O     | 0     | 0       | 100    |
| 14.3-20   | Small       | 362-512     | U<br>L     | 0     | 0       | 100    |
| 20-40     | Medium      | 512-1024    | D          | 0     | 0       | 100    |
| 40-80     | Large       | 1024-2048   | E<br>R     | 0     | 0       | 100    |
|           | Bedrock     | Bedrock     | Bedrock    | 0     | 0       | 100    |
|           |             | Tot         | al Counted | 100   |         |        |

| Summa | ry Data |
|-------|---------|
| D50   | 0.09    |
| D84   | 10      |
| D95   | 15      |



|                                                |                    |     |         |      |        |         |         |        |       |          | am Da  |        |          | . ,     |        |      |       |        |       |       |       |         |        |       |    |
|------------------------------------------------|--------------------|-----|---------|------|--------|---------|---------|--------|-------|----------|--------|--------|----------|---------|--------|------|-------|--------|-------|-------|-------|---------|--------|-------|----|
| _                                              | 2                  |     |         |      | ddle C | Creek T |         |        |       | ) / 94 · | - Segm |        |          |         |        | eet) | 1     |        |       | r     |       |         |        |       |    |
| Parameter                                      | Gauge <sup>2</sup> | Reg | ional C | urve |        | Pre     | Existin | g Cond | ition |          |        | Refere | ence Re  | each(es | ) Data |      |       | Design | 1     |       | Mo    | nitorin | g Base | line  |    |
| Dimension and Substrate - Riffle Only          |                    | LL  | UL      | Eq.  | Min    | Mean    | Med     | Max    | SD⁵   | n        | Min    | Mean   | Med      | Max     | SD⁵    | n    | Min   | Med    | Max   | Min   | Mean  | Med     | Max    | SD⁵   | n  |
| Bankfull Width (ft)                            |                    |     |         |      |        |         | 20.0    |        |       |          | 8.0    |        |          | 9.2     |        |      |       | 20.0   |       | 19.3  | 20.1  |         | 20.8   |       | 2  |
| Floodprone Width (ft)                          |                    |     |         |      |        |         | 53.7    |        |       |          | 20.0   |        |          | 92.0    |        |      |       | 35.0   |       | 35.4  | 62.1  |         | 88.7   |       | 2  |
| Bankfull Mean Depth (ft)                       |                    |     |         |      |        |         | 3.1     |        |       |          | 1.2    |        |          | 1.5     |        |      |       | 1.6    |       | 1.0   | 1.2   |         | 1.4    |       | 2  |
| <sup>1</sup> Bankfull Max Depth (ft            | )                  |     |         |      |        |         | 4.6     |        |       |          | 1.3    |        |          | 1.9     |        |      |       | 1.8    |       | 1.6   | 1.9   |         | 2.1    |       | 2  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> | )                  |     |         |      |        |         | 61.3    |        |       |          | 11.3   |        |          | 12.3    |        |      |       | 29.3   |       | 19.9  | 24.7  |         | 29.5   |       | 2  |
| Width/Depth Ratio                              |                    |     |         |      |        |         | 6.5     |        |       |          | 5.3    |        |          | 7.5     |        |      |       | 12.0   |       | 14.7  | 16.8  |         | 18.8   |       | 2  |
| Entrenchment Ratio                             |                    |     |         |      |        |         | 2.7     |        |       |          | 2.5    |        |          | 10.0    |        |      |       | 1.8    |       | 1.7   | 3.2   |         | 4.6    |       | 2  |
| <sup>1</sup> Bank Height Ratio                 | )                  |     |         |      |        |         |         |        |       |          | 1.6    |        |          | 1.7     |        |      |       | 1.0    |       | 1.0   | 1.0   |         | 1.0    |       | 2  |
| Profile                                        |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Riffle Length (ft)                             |                    |     |         |      |        |         | 11.5    |        |       |          |        |        |          |         |        |      |       |        |       | 11.0  | 27.9  | 24.5    | 62.0   | 16.2  | 8  |
| Riffle Slope (ft/ft)                           |                    |     |         |      |        |         | 0.027   |        |       |          | 0.017  |        |          | 0.033   |        |      |       | 0.0117 |       | 0.006 | 0.013 | 0.011   | 0.031  | 0.008 | 8  |
| Pool Length (ft                                | )                  |     |         |      |        |         | 40      |        |       |          | 10.8   |        |          | 14.0    |        |      |       |        |       | 18.0  | 31.6  | 30.0    | 55.0   | 12.2  | 7  |
| Pool Max depth (ft                             | )                  |     |         |      |        |         | 4.79    |        |       |          | 2.0    |        |          | 2.7     |        |      |       | 2.85   |       | 2.6   | 3.3   | 3.3     | 3.8    | 0.5   | 6  |
| Pool Spacing (ft)                              | )                  |     |         |      |        |         | 10      |        |       |          | 4.4    |        |          | 47.2    |        |      | 52.0  |        | 101.0 | 47.0  | 91.4  | 91.0    | 126.0  | 25.4  | 7  |
| Pattern                                        |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Channel Beltwidth (ft)                         | )                  |     | I       | I    | 1      | 1       | 130.0   | 1      |       |          | 20.0   |        |          | 69.0    |        |      | 50.0  |        | 173.0 | 50.0  | 55.6  | 54.0    | 67.0   | 6.7   | 5  |
| Radius of Curvature (ft                        |                    |     |         |      |        |         | 25.0    |        |       |          | 6.0    |        |          | 37.0    |        |      | 20.0  |        | 60.0  | 30.0  | 44.9  | 50.0    | 65.0   | 9.0   | 16 |
| Rc:Bankfull width (ft/ft)                      |                    |     |         |      |        |         | 1.3     |        |       |          | 0.7    |        |          | 4.6     |        |      | 0.7   |        | 4.6   | 1.6   | 2.2   |         | 3.1    |       |    |
| Meander Wavelength (ft)                        |                    |     |         |      |        |         | 115.0   |        |       |          | 48.0   |        |          | 85.0    |        |      | 104.0 |        | 213.0 | 135.0 | 168.4 | 171.5   | 208.0  | 21.3  | 8  |
| Meander Width Ratio                            |                    |     |         |      |        |         | 5.8     |        |       |          | 2.5    |        |          | 8.6     |        |      | 2.5   |        | 8.6   | 2.6   | 2.8   |         | 3.2    |       |    |
|                                                |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Transport parameters                           |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Reach Shear Stress (competency) lb/f           | 2                  |     |         |      |        |         | 0.      | 53     |       |          |        |        |          |         |        |      |       | 0.47   |       |       |       | 0.      | 42     |       |    |
| Max part size (mm) mobilized at bankful        | I                  |     |         |      |        |         | 38      | 3.7    |       |          |        |        |          |         |        |      |       | 35.4   |       |       |       | 32      | 2.0    |       |    |
| Stream Power (transport capacity) W/m          | 2                  |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Additional Reach Parameters                    |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Rosgen Classification                          |                    |     |         |      |        |         | Impai   | red C4 |       |          |        |        | С        | 4       |        |      |       | C4     |       |       |       | 0       | 24     |       |    |
| Bankfull Velocity (fps)                        |                    |     |         |      |        |         |         | .4     |       |          |        |        |          |         |        |      |       | 3.49   |       |       |       |         |        |       |    |
| Bankfull Discharge (cfs)                       |                    |     |         |      |        |         | 32      | 8.4    |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Valley length (ft)                             |                    |     |         |      |        |         |         | 38     |       |          |        |        |          |         |        |      |       | 1548   |       |       |       | 11      | 22     |       |    |
| Channel Thalweg length (ft)                    |                    |     |         |      |        |         | 19      | 00     |       |          |        |        |          |         |        |      |       | 1796   |       |       |       | 12      | 95     |       |    |
| Sinuosity (ft                                  | )                  |     |         |      |        |         |         | 16     |       |          |        |        | 1        | .3      |        |      |       | 1.16   |       |       |       | 1.      | 15     |       |    |
| Water Surface Slope (Channel) (ft/ft)          |                    |     |         |      |        |         | 0.0     | 051    |       |          |        |        | 0.0061 · |         |        |      |       | 0.0047 |       |       |       | 0.0     | 056    |       |    |
| BF slope (ft/ft                                | )                  |     |         |      |        |         | 0.0     | 051    |       |          |        |        |          |         |        |      |       | 0.0047 |       |       |       | 0.0     | 057    |       |    |
| <sup>3</sup> Bankfull Floodplain Area (acres)  |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        | _     |    |
| <sup>4</sup> % of Reach with Eroding Banks     | 3                  |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Channel Stability or Habitat Metric            | :                  |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |
| Biological or Other                            |                    |     |         |      |        |         |         |        |       |          |        |        |          |         |        |      |       |        |       |       |       |         |        |       |    |

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the too of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

|                                                  |                    |     |          |     | Coddl | Croo |          |        |                 |        |        |      | Summa  |       | ver (97         | E foot) |       |        |       |        |        |           |          |        |   |
|--------------------------------------------------|--------------------|-----|----------|-----|-------|------|----------|--------|-----------------|--------|--------|------|--------|-------|-----------------|---------|-------|--------|-------|--------|--------|-----------|----------|--------|---|
| Parameter                                        | Gauge <sup>2</sup> | Reg | gional C |     |       |      |          | g Conc |                 | Run) / | 94 - 5 | -    | ence R |       |                 | 5 leet) |       | Design |       |        | Me     | onitoring | g Baseli | ne     |   |
| Dimension and Substrate - Riffle Only            |                    | LL  | UL       | Eq. | Min   | Mean | Med      | Max    | SD <sup>5</sup> | n      | Min    | Mean | Med    | Max   | SD <sup>5</sup> | n       | Min   | Med    | Max   | Min    | Mean   | Med       | Max      | SD⁵    | n |
| Bankfull Width (ft)                              | )                  |     |          | · · |       |      | 20.0     |        |                 |        | 8.0    |      |        | 9.2   |                 |         |       | 20.0   |       | 20.4   | 21.7   |           | 22.9     |        | 2 |
| Floodprone Width (ft)                            | )                  |     |          |     |       |      | 75.0     |        |                 |        | 20.0   |      |        | 92.0  |                 |         |       | 100.0  |       | 96.4   | 123.4  |           | 150.3    |        | 2 |
| Bankfull Mean Depth (ft                          | )                  |     | 1        |     | 1     |      | 3.7      |        |                 |        | 1.2    |      |        | 1.5   |                 |         |       | 1.7    |       | 1.3    | 1.3    |           | 1.3      |        | 2 |
| <sup>1</sup> Bankfull Max Depth (ft              | )                  |     | 1        |     | 1     |      | 5.1      |        |                 |        | 1.3    |      |        | 1.9   |                 |         |       | 1.8    |       | 2.1    | 2.2    |           | 2.2      |        | 2 |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | )                  |     |          |     |       |      | 74.5     |        |                 |        | 11.3   |      |        | 12.3  |                 |         |       | 29.3   |       | 27.1   | 28.0   |           | 28.8     |        | 2 |
| Width/Depth Ratio                                |                    |     |          |     |       |      | 5.4      |        |                 |        | 5.3    |      |        | 7.5   |                 |         |       | 12.0   |       | 15.3   | 16.8   |           | 18.2     |        | 2 |
| Entrenchment Ratio                               |                    |     | 1        |     | 1     |      | 3.8      |        |                 |        | 2.5    |      |        | 10.0  |                 |         |       | 5.0    |       | 4.7    | 5.7    |           | 6.6      |        | 2 |
| <sup>1</sup> Bank Height Ratio                   |                    |     |          |     |       |      |          |        |                 |        | 1.6    |      |        | 1.7   |                 |         |       | 1.1    |       | 1.0    | 1.0    |           | 1.0      |        | 2 |
| Profile                                          |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        | •      |           |          |        |   |
| Riffle Length (ft                                | )                  |     |          |     |       |      | 6.0      |        |                 |        |        |      |        |       |                 |         |       |        |       | 18.0   | 32.0   | 31.0      | 48.0     | 12.3   | 5 |
| Riffle Slope (ft/ft)                             | )                  |     |          |     |       |      | 0.035    |        |                 |        | 0.017  |      |        | 0.033 |                 |         |       | 0.0114 |       | 0.0057 | 0.0090 | 0.0076    | 0.0150   | 0.0042 | 4 |
| Pool Length (ft                                  | )                  |     |          |     |       |      | 81.0     |        |                 |        | 10.8   |      |        | 14.0  |                 |         |       |        |       | 14.0   | 47.4   | 35.0      | 48.0     | 30.5   | 7 |
| Pool Max depth (ft                               | )                  |     |          |     |       |      | 5.8      |        |                 |        | 2.0    |      |        | 2.7   |                 |         |       | 2.85   |       | 2.4    | 3.0    | 3.1       | 3.5      | 0.4    | 6 |
| Pool Spacing (ft                                 | )                  |     |          |     |       |      | 7.5      |        |                 |        | 4.4    |      |        | 47.2  |                 |         | 52    |        | 101   | 92.0   | 112.8  | 114.0     | 131.0    | 19.7   | 4 |
| Pattern                                          |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Channel Beltwidth (ft                            | )                  |     | 1        |     |       | 1    |          | 1      |                 |        | 20.0   |      | 1      | 69.0  | 1               |         | 50.0  |        | 173.0 | 67.0   | 77.2   | 75.0      | 89.0     | 9.1    | 5 |
| Radius of Curvature (ft                          | )                  |     |          |     |       |      |          |        |                 |        | 6.0    |      |        | 37.0  |                 |         | 35.0  |        | 56.0  | 45.0   | 48.9   | 50.0      | 50.0     | 3.9    | 7 |
| Rc:Bankfull width (ft/ft                         | )                  |     |          |     |       |      |          |        |                 |        | 0.7    |      |        | 4.6   |                 |         | 0.7   |        | 4.6   | 2.2    | 2.3    |           | 2.2      |        |   |
| Meander Wavelength (ft)                          | )                  |     |          |     |       |      |          |        |                 |        | 48.0   |      |        | 85.0  |                 |         | 104.0 |        | 213.0 | 190.0  | 204.2  | 210.0     | 211.0    | 9.4    | 5 |
| Meander Width Ratio                              |                    |     |          |     |       |      |          |        |                 |        | 2.5    |      |        | 8.6   |                 |         | 2.5   |        | 8.6   | 3.3    | 3.6    |           | 3.9      | -      |   |
|                                                  |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Transport parameters                             |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Reach Shear Stress (competency) lb/f             | 2                  |     |          |     |       |      | 0.       | 53     |                 |        | 1      |      |        |       |                 |         | 1     | 0.36   |       |        |        | 0.:       | 34       |        |   |
| Max part size (mm) mobilized at bankfu           |                    |     |          |     |       |      | 38       | 3.7    |                 |        |        |      |        |       |                 |         |       | 27.3   |       |        |        | 25        | 5.4      |        |   |
| Stream Power (transport capacity) W/m2           | 2                  |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         | 1     |        |       |        |        |           |          |        |   |
| Additional Reach Parameters                      |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Rosgen Classification                            |                    |     |          |     | 1     |      | Modified | Channe | el              |        | 1      |      | 0      | 24    |                 |         | 1     | C4     |       | 1      |        | С         | :4       |        |   |
| Bankfull Velocity (fps                           | )                  |     |          |     |       |      |          | .9     |                 |        |        |      |        |       |                 |         | İ     | 3.49   |       |        |        |           |          |        |   |
| Bankfull Discharge (cfs                          | )                  |     |          |     |       |      |          | 2.9    |                 |        |        |      |        |       |                 |         |       |        | _     |        |        |           |          |        |   |
| Valley length (ft                                | )                  |     |          |     |       |      |          | 50     |                 |        |        |      |        |       |                 |         |       | 1550   |       |        |        | 76        | 63       |        | _ |
| Channel Thalweg length (ft                       | )                  |     |          |     |       |      |          | 700    |                 |        |        |      |        |       |                 |         | İ     | 1922   |       |        |        |           | 75       |        |   |
| Sinuosity (ft                                    | )                  |     |          |     |       |      | 1        |        |                 |        |        |      | 1      | .3    |                 |         | Ì     | 1.24   |       |        |        | 1.1       |          |        |   |
| Water Surface Slope (Channel) (ft/ft)            | )                  |     |          |     |       |      |          | 052    |                 |        |        |      | 0.0061 |       | )               |         | I     | 0.0035 |       |        |        | 0.0       |          |        |   |
| BF slope (ft/ft)                                 | )                  |     |          |     |       |      |          | 052    |                 |        |        | _    | _      |       | _               | _       |       | 0.0035 |       |        |        | 0.0       |          |        | - |
| <sup>3</sup> Bankfull Floodplain Area (acres     |                    |     |          |     |       | _    |          |        |                 | _      |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| <sup>4</sup> % of Reach with Eroding Banks       | 4                  |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Channel Stability or Habitat Metric              |                    |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |
| Biological or Othe                               | r                  |     |          |     |       |      |          |        |                 |        |        |      |        |       |                 |         |       |        |       |        |        |           |          |        |   |

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

|                                            |        |        |         | -         | Table   | 11a. | Moni | itoring | Data - | Dime    | nsion   | al Mo  | orpho | logy S | Summ   | ary (D | imensi   | onal F   | aram     | eters | – Cro | oss Se | ctions | ;)       |          |          |     |     |      |     |     |     |     |     |     |
|--------------------------------------------|--------|--------|---------|-----------|---------|------|------|---------|--------|---------|---------|--------|-------|--------|--------|--------|----------|----------|----------|-------|-------|--------|--------|----------|----------|----------|-----|-----|------|-----|-----|-----|-----|-----|-----|
|                                            |        |        |         |           |         |      |      | -       |        |         |         |        | -     |        |        |        | (1295'   |          |          |       |       |        |        |          |          |          |     |     |      |     |     |     |     |     |     |
|                                            |        | Cr     | oss Sec | tion 1 (R | tiffle) |      |      |         | C      | ross Se | ction 2 | (Pool) |       |        |        |        | ross Se  | ction 3  | (Riffle) |       |       |        |        | Cross Se | ection 4 | (Pool)   |     |     |      |     |     |     |     |     |     |
| Based on fixed baseline bankfull elevation | Base   | MY1    | MY2     | MY3       | MY4     | MY5  | MY+  | Base    | MY1    | MY2     | MY3     | MY4    | MY5   | MY+    | Base   | MY1    | MY2      | MY3      | MY4      | MY5   | MY+   | Base   | MY1    | MY2      | MY3      | MY4      | MY5 | MY+ | Base | MY1 | MY2 | MY3 | MY4 | MY5 | MY+ |
| Record elevation (datum) used              | 542.62 | 542.62 | 542.62  | 542.62    | 542.6   |      |      | 541.18  | 541.18 | 541.18  | 541.18  | 541.2  |       |        | 539.00 | 539.00 | 539.00   | 539.00   | 539.00   |       |       | 538.77 | 538.77 | 538.77   | 538.77   | 538.77   | 7   |     |      |     |     |     |     |     |     |
| Bankfull Width (ft)                        | 19.31  | 22.90  | 16      | 19.93     | 16.51   |      |      | 34.10   | 35.59  | 23      | 30.49   | 40     |       |        | 20.80  | 25.86  | 21.66    | 21.9     | 21.86    |       |       | 33.00  | 33.51  | 29.34    | 33.96    | 34       |     |     |      |     |     |     |     |     |     |
| Floodprone Width (ft)                      | 88.70  | 92.50  | 91      | 96        | 92      |      |      | 56.20   | 60.70  | 65      | 64.5    | 67.5   |       |        | 35.40  | 37.80  | 36.9     | 35.2     | 37       |       |       | 45.70  | 47.90  | 51.5     | 55       | 59       |     |     |      |     |     |     |     |     |     |
| Bankfull Mean Depth (ft)                   | 1.03   | 0.99   | 1.71    | 1.12      | 1.25    |      |      | 1.20    | 1.16   | 1.82    | 0.94    |        |       |        | 1.40   | 1.31   | 1.13     | 1.02     | 1.59     |       |       | 1.30   | 1.30   | 1.06     | 1        | 1.69     |     |     |      |     |     |     |     |     |     |
| Bankfull Max Depth (ft)                    | 1.60   | 2.09   | 2.16    | 2.43      | 2.27    |      |      | 3.30    | 3.32   | 3.5     | 3.1     | 3.78   |       |        | 2.10   | 2.39   | 2        | 2.06     | 2.36     |       |       | 2.60   | 2.46   | 3.16     | 3.15     | 4.96     |     |     |      |     |     |     |     |     |     |
| Bankfull Cross Sectional Area (If)         | 19.90  | 22.60  | 27.3    | 22.3      | 20.72   |      |      | 39.43   | 41.46  | 41.97   | 28.8    |        |       |        | 29.50  | 33.89  | 24.53    | 22.34    | 34.75    |       |       | 43.50  | 43.72  | 30.99    | 33.86    |          |     |     |      |     |     |     |     |     |     |
| Bankfull Width/Depth Ratio                 | 18.80  | 23.20  | 7.41    | 17.81     | 13.16   |      |      | 29.50   | 30.55  | 12.6    |         | 45.05  |       |        | 14.70  | 19.73  | 19.13    | 21.47    | 13.75    |       |       | 25.00  | 25.68  | 27.78    | 34.06    | 20.07    |     |     |      |     |     |     |     |     |     |
| Bankfull Entrenchment Ratio                | 4.60   | 4.04   | 5.69    | 4.82      | 5.57    |      |      | 1.60    | 1.71   | 2.83    | 2.12    |        |       |        | 1.70   | 1.46   | 1.7      | 1.61     | 1.69     |       |       | 1.40   | 1.43   | 1.76     | 1.62     | 1.74     |     |     |      |     |     |     |     |     |     |
| Bankfull Bank Height Ratio                 |        | 0.98   | 1.16    | 0.93      | 0.94    |      |      | 1.00    | 1.00   | 1       | 0.9     |        |       |        | 1.00   | 1.00   | 1.04     | 0.85     | 1.05     |       |       | 1.00   | 1.00   | 0.96     | 0.96     | 1.00     |     |     |      |     |     |     |     |     |     |
| Cross Sectional Area between end pins (ñ)  | 421.80 | 411.70 |         |           | 458.5   |      |      |         | 471.20 | 455.94  | 451.7   | 458.9  |       |        |        | 262.10 |          | 232.26   | 289.8    |       |       |        |        | 349.78   | 362.21   | 416.8    |     |     |      |     |     |     |     |     |     |
| d50 (mm)                                   | 4.90   | 32.00  | 19      | 11.3      | 2       |      |      | 12.00   | 27.00  |         |         |        |       |        | 6.00   | 6.50   | 8.5      | 33       | 10       |       |       | 0.34   | 4.40   |          |          |          |     |     |      |     |     |     |     |     |     |
|                                            |        | Cr     | oss Sec | tion 5 (R | tiffle) |      |      |         | С      | ross Se | ction 6 | (Pool) |       |        |        |        | Cross Se | ection 7 | (Pool)   |       |       |        | 0      | Cross Se | ction 8  | (Riffle) |     |     |      |     |     |     |     |     |     |
| Based on fixed baseline bankfull elevation | Base   | MY1    | MY2     | MY3       | MY4     | MY5  | MY+  | Base    | MY1    | MY2     | MY3     | MY4    | MY5   | MY+    | Base   | MY1    | MY2      | MY3      | MY4      | MY5   | MY+   | Base   | MY1    | MY2      | MY3      | MY4      | MY5 | MY+ |      |     |     |     |     |     |     |
| Record elevation (datum) used              | 536.34 | 536.34 | 536.34  | 536.34    | 536.3   |      |      | 535.56  | 535.56 | 535.56  | 535.56  | 535.6  |       |        | 534.62 | 534.62 | 534.62   | 534.62   | 534.62   |       |       | 534.36 | 534.36 | 534.36   | 534.36   | 534.36   | 6   |     |      |     |     |     |     |     |     |
| Bankfull Width (ft)                        | 22.90  | 19.98  | 18.49   | 37        | 22.9    |      |      | 19.30   | 19.03  | 22.11   | 26.48   | 26     |       |        | 69.30  | 34.53  | 31.01    | 36.4     | 28.31    |       |       | 20.40  | 22.02  | 16.78    | 32.52    | 38.48    |     |     |      |     |     |     |     |     |     |
| Floodprone Width (ft)                      | 150.30 | 150.10 | 138     | 139.5     | 145.5   |      |      | 95.20   | 104.40 | 100.4   | 99      | 100.5  |       |        | 93.00  | 99.00  | 96       | 96       | 98       |       |       | 96.40  | 95.60  | 89.5     | 112      | 121      |     |     |      |     |     |     |     |     |     |
| Bankfull Mean Depth (ft)                   | 1.30   | 1.40   | 0.97    | 0.61      | 0.75    |      |      | 1.50    | 1.40   | 1.58    | 1.16    | 1.44   |       |        | 0.70   | 1.07   | 1.20     | 0.9      | 1.4      |       |       | 1.30   | 1.30   | 1.18     | 0.81     | 0.76     |     |     |      |     |     |     |     |     |     |
| Bankfull Max Depth (ft)                    | 2.10   | 1.94   | 1.15    | 1.36      | 2.15    |      |      | 2.40    | 2.75   | 2.71    | 2.46    | 3.02   |       |        | 3.00   | 3.14   | 3.11     | 3.22     | 3.48     |       |       | 2.20   | 2.33   | 2.18     | 2.39     | 3.29     |     |     |      |     |     |     |     |     |     |
| Bankfull Cross Sectional Area (ff)         | 28.80  | 27.92  | 18      | 22.7      | 17.21   |      |      | 28.20   | 26.71  | 34.9    | 30.82   | 37.45  |       |        | 48.90  | 37.08  | 37.17    | 32.89    | 39.5     |       |       | 27.10  | 28.64  | 19.78    | 26.2     | 29.3     |     |     |      |     |     |     |     |     |     |
| Bankfull Width/Depth Ratio                 | 18.20  | 14.30  | 18.99   | 60.31     | 30.47   |      |      | 13.10   | 13.56  | 14.01   | 22.75   | 18.05  |       |        | 96.30  | 32.16  | 25.87    | 40.28    | 20.29    |       |       | 15.30  | 16.93  | 14.28    | 40.36    | 50.54    |     |     |      |     |     |     |     |     |     |
| Bankfull Entrenchment Ratio                | 6.60   | 7.51   | 7.46    | 3.77      | 6.35    |      |      | 5.00    | 5.49   | 4.54    | 3.74    | 3.87   |       |        | 1.30   | 2.87   | 3.1      | 2.64     | 3.46     |       |       | 4.70   | 4.34   | 5.33     | 3.44     | 3.14     |     |     |      |     |     |     |     |     |     |
| Bankfull Bank Height Ratio                 | 1.00   | 0.83   | 0.79    | 1.01      | 0.9     |      |      | 1.00    | 0.94   | 1.00    | 1.02    | 1.04   |       |        | 1.00   | 1.00   | 1.03     | 0.96     | 1.00     |       |       | 1.00   | 0.94   | 0.99     | 0.95     | 0.95     |     |     |      |     |     |     |     |     |     |
| Cross Sectional Area between end pins (f)  | 823.40 | 870.60 | 807.93  | 780.65    | 805.4   |      |      | 467.00  |        | 540.64  | 520.1   | 533.6  |       |        | 458.80 | 441.30 | 480.99   | 423.02   | 529.8    |       |       | 442.50 |        | 444.59   |          |          |     |     |      |     |     |     |     |     |     |
| d50 (mm)                                   | 1.60   | 0.062  | 17      | 9         | 8       |      |      | 0.30    | 0.29   |         |         |        |       |        | 0.82   | 0.15   |          |          |          |       |       | 0.42   | 0.074  | 0.062    | 0.125    | 0.09     |     |     |      |     |     |     |     |     |     |

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a donote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide combined in a future submission based on a consistent datum fidetimined to be necessary."

|                                                                               |        |        |        |        |                 |    |        |        |        |        | E:<br>Coddle    |        |       |        |      |       |         |           |           |       |       |       | mmar                      |       | at)      |         |          |      |        |   |     |      |     |                |                 |   |
|-------------------------------------------------------------------------------|--------|--------|--------|--------|-----------------|----|--------|--------|--------|--------|-----------------|--------|-------|--------|------|-------|---------|-----------|-----------|-------|-------|-------|---------------------------|-------|----------|---------|----------|------|--------|---|-----|------|-----|----------------|-----------------|---|
| Parameter                                                                     |        |        | Base   | eline  |                 |    |        |        | MY     |        | oouun           | . 0100 |       | outurj | M)   |       |         | - 0       | cgiii     |       |       | (- 3  | .1 (123                   | 0 100 |          |         | MY       | (- 4 |        |   |     |      | MY  | - 5            |                 | _ |
| Dimension and Substrate - Riffle only                                         | Min    | Mean   | Med    | Max    | SD <sup>4</sup> | n  | Min    | Mean   | Med    | Max    | SD <sup>4</sup> | n      | Min   | Mean   | Med  | Max   | $SD^4$  | n         | Min       | Mean  | Med   | Max   | $SD^4$                    | n     | Min      | Mean    | Med      | Max  | $SD^4$ | n | Min | Mean | Med | Max            | SD <sup>4</sup> | n |
| Bankfull Width (ft)                                                           | 19.3   | 20.1   |        | 20.8   |                 | 2  | 22.9   | 24.4   |        | 25.9   |                 | 2      | 16    | 18.8   |      | 21.6  |         | 2         | 19.9      | 20.92 |       | 21.9  |                           | 2     | 16.5     | 19.2    |          | 21.9 |        | 2 |     |      |     | , <b>-</b> - 7 |                 | 1 |
| Floodprone Width (ft)                                                         | 35.4   | 62.1   |        | 88.7   |                 | 2  | 37.8   | 65.2   |        | 92.5   |                 | 2      | 36.9  | 63.9   |      | 91    |         | 2         | 35.2      | 65.6  |       | 96    |                           | 2     | 37       | 64.5    |          | 92   |        | 2 |     |      |     | ,              |                 |   |
| Bankfull Mean Depth (ft)                                                      | 1.0    | 1.2    |        | 1.4    |                 | 2  | 1.0    | 1.2    |        | 1.3    |                 | 2      | 1.71  | 1.42   |      | 1.13  |         | 2         | 1.02      | 1.07  |       | 1.12  |                           | 2     | 1.25     | 1.42    |          | 1.59 |        | 2 |     |      |     | , <b>-</b> - 7 |                 | 1 |
| <sup>1</sup> Bankfull Max Depth (ft)                                          | 1.6    | 1.9    |        | 2.1    |                 | 2  | 1.7    | 2.1    | 2.1    | 2.4    | 0.2             | 10     | 2     | 2.1    |      | 2.16  |         | 2         | 2.06      | 2.25  |       | 2.43  |                           | 2     | 2.27     | 2.32    |          | 2.36 |        | 2 |     |      |     | ,              |                 |   |
| Bankfull Cross Sectional Area (ft 2)                                          | 19.9   | 24.7   |        | 29.5   |                 | 2  | 22.6   | 28.2   |        | 33.9   |                 | 2      | 24.53 | 25.9   |      | 27.3  |         | 2         | 22.3      | 22.32 |       | 22.3  |                           | 2     | 20.7     | 27.7    |          | 34.8 |        | 2 |     |      |     | 1              |                 | 1 |
| Width/Depth Ratio                                                             | 14.7   | 16.8   |        | 18.8   |                 | 2  | 19.7   | 21.5   |        | 23.2   |                 | 2      | 7.41  | 13.27  |      | 19.13 |         | 2         | 17.8      | 19.64 |       | 21.5  |                           | 2     | 13.2     | 13.5    |          | 13.8 |        | 2 |     |      |     | 1              |                 | 1 |
| Entrenchment Ratio                                                            | 1.7    | 3.2    |        | 4.6    |                 | 2  | 1.5    | 2.8    |        | 4.0    |                 | 2      | 1.7   | 3.7    |      | 5.69  |         | 2         | 1.61      | 3.22  |       | 4.82  |                           | 2     | 1.69     | 3.63    |          | 5.57 |        | 2 |     |      |     | 1              |                 | 1 |
| <sup>1</sup> Bank Height Ratio                                                | 1.0    | 1.0    |        | 1.0    |                 | 2  | 1.0    | 1.0    |        | 1.0    |                 | 2      | 1.04  | 1.1    |      | 1.16  |         | 2         | 0.85      | 0.89  |       | 0.93  |                           | 2     | 0.94     | 1       |          | 1.05 |        | 2 |     |      |     | 1              |                 | 1 |
| Profile                                                                       |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Riffle Length (ft)                                                            | 11.0   | 27.9   | 24.5   | 62.0   | 16.2            | 8  | 4      | 13.1   | 12     | 23     | 6.6             | 11     | 12.1  | 25.2   | 26   | 39    | 19      | 5         | 13.6      | 28.2  | 27.8  | 45.5  | 12.5                      | 6     | 10.4     | 18.2    | 15.4     | 29.6 | 7.29   | 6 |     |      |     | ,              | í T             |   |
| Riffle Slope (ft/ft)                                                          | 0.0060 | 0.0126 | 0.0107 | 0.0310 | 0.0078          | 8  | 0.0077 | 0.0234 | 0.0236 | 0.0425 | 0.0124          | 11     | 0.02  | 0.02   | 0.03 | 0.03  | 0.01    | 5         | 0.01      | 0.015 | 0.013 | 0.03  | 0.01                      | 6     | 0.01     | 0.02    | 0.02     | 0.04 | 0.01   | 6 |     |      |     | , <del></del>  |                 | 1 |
| Pool Length (ft)                                                              | 18.0   | 31.6   | 30.0   | 55.0   | 12.2            | 7  | 13     | 25.2   | 20     | 63     | 13.3            | 15     | 25    | 48.7   | 50.1 | 67.8  | 21.5    | 5         | 25        | 33.14 | 32.2  | 45.3  | 6.92                      | 6     | 22.7     | 38.9    | 38.6     | 68.8 | 15.6   | 7 |     |      |     | , <del></del>  |                 | 1 |
| Pool Max depth (ft)                                                           | 2.6    | 3.3    | 3.3    | 3.8    | 0.5             | 6  | 2.37   | 3.23   | 3.3    | 4.33   | 0.63            | 15     | 2.3   | 3.3    | 3.4  | 4.3   | 1       | 5         | 2.01      | 2.35  | 2.22  | 3.18  | 0.44                      | 6     | 1.02     | 2.41    | 2.52     | 3.36 | 0.72   | 7 |     |      |     | ,              |                 |   |
| Pool Spacing (ft)                                                             | 47.0   | 91.4   | 91.0   | 126.0  | 25.4            | 7  | 35     | 80.9   | 80     | 122.5  | 30.3            | 10     | 83.8  | 125.9  | 127  | 158.8 | 37.6    | 5         | 47.1      | 84.6  | 72.9  | 159.8 | 43.1                      | 6     | 51.3     | 79.1    | 86.9     | 103  | 23.6   | 7 |     |      |     | ,              |                 |   |
| Pattern                                                                       |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Channel Beltwidth (ft)                                                        | 50.0   | 55.6   | 54.0   | 67.0   | 6.7             | 5  |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Radius of Curvature (ft)                                                      | 30.0   | 44.9   | 50.0   | 65.0   | 9.0             | 16 |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Rc:Bankfull width (ft/ft)                                                     | 1.6    | 2.2    |        | 3.1    |                 |    |        |        |        |        |                 |        |       |        |      | Pau   | em data | a will no | it typica |       |       |       | risual data<br>ts from ba |       | Insional | Jala Or | pronie d | Jala |        |   |     |      |     |                |                 |   |
| Meander Wavelength (ft)                                                       | 135.0  | 168.4  | 171.5  | 208.0  | 21.3            | 8  |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Meander Width Ratio                                                           | 2.6    | 2.8    |        | 3.2    |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
|                                                                               |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       | _        |         |          |      |        |   |     |      |     |                |                 |   |
| Additional Reach Parameters                                                   |        |        |        |        |                 |    | _      |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Rosgen Classification                                                         |        |        | С      | 4      |                 |    |        |        | С      | 4      |                 |        |       |        | С    | 4     |         |           |           |       | C     | 24    |                           |       |          |         | С        | 4    |        |   |     |      |     |                |                 |   |
| Channel Thalweg length (ft)                                                   |        |        | 129    | 95     |                 |    |        |        | 12     | 95     |                 |        |       |        | 12   | 95    |         |           |           |       | 12    | 95    |                           |       |          |         | 12       | 95   |        |   |     |      |     |                |                 |   |
| Sinuosity (ft)                                                                |        |        | 1.1    | 15     |                 |    |        |        | 1.1    | 15     |                 |        |       |        | 1.   | 15    |         |           |           |       | 1.    | 15    |                           |       |          |         | 1.1      | 15   |        |   |     |      |     |                |                 |   |
| Water Surface Slope (Channel) (ft/ft)                                         |        |        | 0.00   | 056    |                 |    |        |        | 0.00   | )58    |                 |        |       |        | 0.0  | 054   |         |           |           |       | 0.0   | 057   |                           |       |          |         | 0.0      | 062  |        |   |     |      |     |                |                 |   |
| BF slope (ft/ft)                                                              |        |        | 0.00   | )57    |                 |    |        |        | 0.00   | )55    |                 |        |       |        | 0.0  | 054   |         |           |           |       | 0.0   | 006   |                           |       |          |         | 0.0      | 061  |        |   |     |      |     |                |                 |   |
| <sup>3</sup> Ri% / Ru% / P% / G% / S%                                         |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| <sup>3</sup> SC% / Sa% / G% / C% / B% / Be%                                   |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| <sup>3</sup> d16 / d35 / d50 / d84 / d95 /                                    |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| <sup>2</sup> % of Reach with Eroding Banks                                    |        |        |        |        |                 |    |        |        | 2.     | 3      |                 |        |       |        | . (  | D     |         |           |           |       | :     | 3     |                           |       |          |         | (        | Ď    |        |   |     |      |     |                |                 |   |
| Channel Stability or Habitat Metric                                           |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 |   |
| Biological or Other<br>Shaded cells indicate that these will typically not be |        |        |        |        |                 |    |        |        |        |        |                 |        |       |        |      |       |         |           |           |       |       |       |                           |       |          |         |          |      |        |   |     |      |     |                |                 | - |

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step: Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

|                                                       |             |        |        |        |                 |   |        |        |        |        | E<br>Codd       |   |       |       |       | nitorir<br>dian F |         |        |           |       |       |       |                        |   | :)       |          |            |          |        |   |          |      |     |          |                 | Τ |
|-------------------------------------------------------|-------------|--------|--------|--------|-----------------|---|--------|--------|--------|--------|-----------------|---|-------|-------|-------|-------------------|---------|--------|-----------|-------|-------|-------|------------------------|---|----------|----------|------------|----------|--------|---|----------|------|-----|----------|-----------------|---|
| Parameter                                             |             |        | Base   | eline  |                 |   |        |        | Mì     | (-1    |                 |   |       |       |       | Y-2               | ,.      |        |           |       | MY    |       |                        |   | ĺ        |          | M          | (- 4     |        |   |          |      | M   | Y- 5     |                 |   |
| Dimension and Substrate - Riffle only                 | Min         | Mean   | Med    | Max    | SD <sup>4</sup> | n | Min    | Mean   | Med    | Max    | SD <sup>4</sup> | n | Min   | Mean  | Med   | Max               | $SD^4$  | n      | Min       | Mean  | Med   | Max   | SD <sup>4</sup>        | n | Min      | Mean     | Med        | Max      | $SD^4$ | n | Min      | Mean | Med | Max      | SD <sup>4</sup> | n |
| Bankfull Width (ft)                                   | 20.4        | 21.7   |        | 22.9   |                 | 2 | 20.0   | 21.0   |        | 22.0   |                 | 2 | 16.78 | 17.64 |       | 18.49             |         | 2      | 32.5      | 34.76 |       | 37    |                        | 2 | 22.9     | 30.7     |            | 38.5     |        | 2 |          |      |     |          |                 |   |
| Floodprone Width (ft)                                 | 96.4        | 123.4  |        | 150.3  |                 | 2 | 95.6   | 122.9  |        | 150.1  |                 | 2 | 89.5  | 113.8 |       | 138               |         | 2      | 112       | 125.8 |       | 139.5 |                        | 2 | 121      | 133      |            | 146      |        | 2 |          |      |     |          |                 | _ |
| Bankfull Mean Depth (ft)                              | 1.3         | 1.3    |        | 1.3    |                 | 2 | 1.3    | 1.4    |        | 1.4    |                 | 2 | 0.97  | 1.07  |       | 1.18              |         | 2      | 0.61      | 0.71  |       | 0.81  |                        | 2 | 0.75     | 0.76     |            | 0.76     |        | 2 |          |      |     |          |                 |   |
| <sup>1</sup> Bankfull Max Depth (ft)                  | 2.1         | 2.2    |        | 2.2    |                 | 2 | 1.9    | 2.2    | 2.2    | 2.4    | 0.2             | 7 | 1.15  | 1.66  |       | 2.18              |         | 2      | 1.36      | 1.875 |       | 2.39  |                        | 2 | 2.15     | 2.72     |            | 3.29     |        | 2 |          |      |     |          |                 |   |
| Bankfull Cross Sectional Area (ft 2)                  | 27.1        | 28.0   |        | 28.8   |                 | 2 | 27.9   | 28.3   |        | 28.6   |                 | 2 | 18    | 18.89 |       | 19.78             |         | 2      | 22.7      | 24.45 |       | 26.2  |                        | 2 | 17.2     | 23.3     |            | 29.3     |        | 2 |          |      |     |          |                 |   |
| Width/Depth Ratio                                     | 15.3        | 16.8   |        | 18.2   |                 | 2 | 14.3   | 15.6   |        | 16.9   |                 | 2 | 14.28 | 16.63 |       | 18.99             |         | 2      | 40.4      | 50.34 |       | 60.31 |                        | 2 | 30.5     | 40.5     |            | 50.5     |        | 2 |          |      |     |          |                 |   |
| Entrenchment Ratio                                    | 4.7         | 5.7    |        | 6.6    |                 | 2 | 4.3    | 5.9    |        | 7.5    |                 | 2 | 5.33  | 6.39  |       | 7.46              |         | 2      | 3.44      | 3.605 |       | 3.77  |                        | 2 | 3.14     | 3.46     |            | 3.77     |        | 2 |          |      |     |          |                 |   |
| <sup>1</sup> Bank Height Ratio                        | 1.0         | 1.0    |        | 1.0    |                 | 2 | 0.8    | 0.9    |        | 0.9    |                 | 2 | 0.79  | 0.89  |       | 0.99              |         | 2      | 0.95      | 0.98  |       | 1.01  |                        | 2 | 0.95     | 0.98     |            | 1.01     |        | 2 |          |      |     |          |                 | _ |
| Profile                                               |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 |   |
| Riffle Length (ft)                                    | 18.0        | 32.0   | 31.0   | 48.0   | 12.3            | 5 | 4.0    | 13.5   | 14.5   | 24.0   | 7.2             | 6 | 10.78 | 18.17 | 17.8  | 27.19             | 6.16    | 6      | 15.5      | 17.35 | 17.1  | 19.46 | 1.83                   | 5 | 6.44     | 12.4     | 13.5       | 16.5     | 4.01   | 5 |          |      |     |          |                 |   |
| Riffle Slope (ft/ft)                                  | 0.0057      | 0.0090 | 0.0076 | 0.0150 | 0.0042          | 4 | 0.0088 | 0.0141 | 0.0152 | 0.0188 | 0.0036          | 6 | 0.004 | 0.012 | 0.012 | 0.021             | 0.007   | 6      | 0.016     | 0.030 | 0.029 | 0.033 | 0.010                  | 5 | 0.01     | 0.03     | 0.02       | 0.09     | 0.03   | 5 |          |      |     |          | 1               |   |
| Pool Length (ft)                                      | 14.0        | 47.4   | 35.0   | 48.0   | 30.5            | 7 | 26.0   | 45.6   | 48.0   | 71.0   | 17.6            | 7 | 16.41 | 41.3  | 45.6  | 66.8              | 18.7    |        |           |       | 28.57 |       |                        | 5 | 16.1     | 35.5     | 37.4       | 53.1     | 13.6   | 5 |          |      |     |          | 1               |   |
| Pool Max depth (ft)                                   | 2.4         | 3.0    | 3.1    | 3.5    | 0.4             | 6 | 2.4    | 3.0    | 2.8    | 3.9    | 0.5             | 7 | 14.79 | 18.1  | 18.4  | 20.7              | 2.17    | 5      | 2.41      | 2.84  | 3.07  | 3.21  | 0.39                   | 5 | 1.76     | 1.98     | 1.93       | 2.42     | 0.26   | 5 |          |      |     |          |                 |   |
| Pool Spacing (ft)                                     | 92.0        | 112.8  | 114.0  | 131.0  | 19.7            | 4 | 45.0   | 93.1   | 107.0  | 141.0  | 38.0            | 6 | 67.6  | 122.2 | 123   | 176.1             | 44.7    | 4      | 40.6      | 50.48 | 47.13 | 66.96 | 10.7                   | 5 | 23.9     | 41.7     | 47.5       | 62.8     | 17     | 5 |          |      |     |          |                 |   |
| Pattern                                               |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 |   |
| Channel Beltwidth (ft)                                | 67.0        | 77.2   | 75.0   | 89.0   | 9.1             | 5 |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 |   |
| Radius of Curvature (ft)                              | 45.0        | 48.9   | 50.0   | 50.0   | 3.9             | 7 |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        | 1 |          |      |     |          |                 |   |
| Rc:Bankfull width (ft/ft)                             | 2.2         | 2.3    |        | 2.2    |                 |   |        |        |        |        |                 |   |       |       |       | Pattern           | data wi | not ty | pically b |       |       |       | data, din<br>m baselin |   | nal data | or profi | ile data i | indicate |        |   |          |      |     |          |                 |   |
| Meander Wavelength (ft)                               | 190.0       | 204.2  | 210.0  | 211.0  | 9.4             | 5 |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        | - |          |          |            |          |        |   |          |      |     |          |                 |   |
| Meander Width Ratio                                   | 3.3         | 3.6    |        | 3.9    |                 |   |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 |   |
| Additional Reach Parameters                           |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 | - |
| Rosgen Classification                                 |             |        | С      | 4      |                 |   | 1      |        | С      | 4      |                 |   |       |       |       | 24                |         |        |           |       | c     | 4     |                        |   |          |          | -          | 24       |        |   |          |      |     |          |                 |   |
| Channel Thalweg length (ft)                           |             |        | 97     |        |                 |   |        |        | 97     |        |                 |   |       |       |       | 75                |         |        |           |       | 97    |       |                        |   |          |          | 9          |          |        |   |          |      |     |          |                 |   |
| Sinuosity (ft)                                        |             |        | 1.2    |        |                 |   |        |        | 1.2    |        |                 |   |       |       |       | 28                |         |        |           |       | 1.2   |       |                        |   |          |          |            | 28       |        |   |          |      |     |          |                 |   |
| Water Surface Slope (Channel) (ft/ft)                 |             |        | 0.00   | -      |                 |   |        |        | 0.00   |        |                 |   |       |       | 0.0   |                   |         |        |           |       | 0.00  | -     |                        |   |          |          |            | 049      |        |   |          |      |     |          |                 |   |
| BF slope (ft/ft)                                      |             |        | 0.00   |        |                 |   |        |        | 0.00   |        |                 |   | 1     |       |       | 054               |         |        |           |       | 0.0   |       |                        |   |          |          |            | 045      |        |   | 1        |      |     |          |                 |   |
| <sup>3</sup> Ri% / Ru% / P% / G% / S%                 |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       | 1                 |         |        |           |       |       |       |                        |   |          |          |            | Ĺ        |        |   |          |      | T   | · · · ·  |                 |   |
| <sup>3</sup> SC% / Sa% / G% / C% / B% / Be%           |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         | _      |           |       |       |       |                        | _ |          |          |            |          |        |   | <u> </u> |      | 1   | $\vdash$ |                 | _ |
| <sup>3</sup> d16 / d35 / d50 / d84 / d95 /            |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         | _      |           |       |       |       |                        | _ |          | _        |            |          |        |   |          |      | 1   |          |                 |   |
| <sup>2</sup> % of Reach with Eroding Banks            |             |        |        |        |                 |   |        |        | (      | )      |                 |   |       |       |       | o                 |         |        |           |       |       | )     |                        |   |          |          |            |          |        |   | 1        | •    |     |          |                 | - |
| Channel Stability or Habitat Metric                   |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       | _     |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        | _ | t –      |      |     |          |                 |   |
| Biological or Other                                   |             |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         | _      |           |       |       |       |                        | _ |          |          |            |          |        |   |          |      |     |          |                 |   |
| Shaded cells indicate that these will typically not b | e filled in |        |        |        |                 |   |        |        |        |        |                 |   |       |       |       |                   |         |        |           |       |       |       |                        |   |          |          |            |          |        |   |          |      |     |          |                 |   |

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Rifle, Run, Pool, Gilde, Step: Sitt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

Appendix E Hydrologic Data

|                         | Table 12. V                       | erification of Bankfull E                                                             | Events               |
|-------------------------|-----------------------------------|---------------------------------------------------------------------------------------|----------------------|
| Coddle C                | reek Tributary (I                 | ndian Run)/ 94 Segme                                                                  | ent/Reach: 2270 feet |
| Date of Data Collection | Date of Occurrence                | Method                                                                                | Photo                |
| 5/30/2012               | Between 5/11/2011 -<br>5/30/2012  | Visual observation of wrack lines;<br>stream gauge                                    | Photo in MY1 Report  |
| 11/4/2013               | Between 5/30/2012 -<br>11/04/2013 | Visual observation of wrack lines;<br>stream gauge                                    | Photo in MY2 Report  |
| 9/19/2014               | Between 11/04/2013 -<br>9/19/2014 | Visual observation of wrack lines;<br>stream gauge reading at 35"<br>above bankfull   | Photo in MY3 Report  |
| 9/22/2015               | Between 9/19/2014 -<br>9/22/2015  | Visual observation of wrack lines;<br>stream gauge reading at 10.5"<br>above bankfull | Photo below          |

